距离度量方法——余弦相似度、汉明距离、马氏距离、编辑距离

2024-04-09 14:36

本文主要是介绍距离度量方法——余弦相似度、汉明距离、马氏距离、编辑距离,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、 余弦相似度(Cosine Similarity)

1、简介

2、代码实现

二、汉明距离(Hamming Distance)

1、简介

2、代码实现

三、马氏距离(Mahalanobis Distance)

1、简介

2、代码实现

四、编辑距离(Levenshtein Distance)

1、简介

2、代码实现


一、 余弦相似度(Cosine Similarity)

1、简介

  • 余弦相似度是一种常用的向量相似性度量方法,通常用于文本挖掘、信息检索和推荐系统等领域。它衡量了两个向量之间的夹角的余弦值,而不考虑它们的大小。
  • 余弦相似度的计算公式如下:
    • d(A,B)=\frac{AB}{\left \| A \right \|\left \| B \right \|},其中 A 和 B 是两个向量,||A|| 表示向量 A 的模长。

2、代码实现

  • 计算两个向量 a(1,2,3)b(4,5,6) 之间的余弦相似度。
  • import numpy as npdef cosine_similarity(a, b):dot_product = np.dot(a, b)norm_a = np.linalg.norm(a)norm_b = np.linalg.norm(b)similarity = dot_product / (norm_a * norm_b)return similaritya = np.array([1, 2, 3])
    b = np.array([4, 5, 6])
    similarity = cosine_similarity(a, b)
    print("余弦相似度:", similarity)

二、汉明距离(Hamming Distance)

1、简介

  • 汉明距离是一种用于比较两个等长字符串之间的差异性的度量。它衡量了两个字符串之间在相同位置上不同字符的数量。具体来说,汉明距离是通过对比两个字符串中对应位置上的字符来计算的,不同字符的数量即为汉明距离。
  • 例如,假设有两个等长字符串 "1011101" 和 "1001001",它们之间的汉明距离为 2,因为在第 2 和第 5 个位置上的字符不同。

2、代码实现

  • 计算两个字符串 26d700000006000100520004 和 17eb00000006000100480003 之间的汉明距离。
  • def hamming_distance(str1, str2):if len(str1) != len(str2):raise ValueError("两个字符串必须具有相同的长度")distance = sum(c1 != c2 for c1, c2 in zip(str1, str2))return distancestr1 = "26d700000006000100520004"
    str2 = "17eb00000006000100480003"
    distance = hamming_distance(str1, str2)
    print("汉明距离:", distance)

三、马氏距离(Mahalanobis Distance)

1、简介

  • 马氏距离是一种考虑了数据协方差结构的距离度量方法,通常用于多维空间中数据点之间的距离计算。它衡量了两个数据点在多维空间中的差异性,同时考虑了各个特征之间的相关性。
  • 马氏距离可以看作是欧氏距离的一种修正,修正了欧氏距离中各维度尺度不一致且相关的问题。
  • 单个数据点的马氏距离:
    • d(x)=\sqrt{(x-\mu )^TS^{-1}(x-\mu)},其中 \mu 为样本均值。
  • 数据点 x, y 之间的马氏距离:
    • d(x,y)=\sqrt{(x-y)^TS^{-1}(x-y)},其中 S^{-1} 为样本集的协方差矩阵的逆矩阵。
    • 协方差矩阵的计算公式如下:
      • S=\frac{1}{n-1}\sum_{i}^{n}(x_i-\bar{x})(x_i-\bar{x})^T,其中 x_i 表示第 i 个样本,\bar{x} 表示所有样本的均值向量。(x_i-\bar{x}) 是每个样本与均值向量的偏差,(x_i-\bar{x})^T 表示它的转置。

2、代码实现

  • 计算一样本数据集 { [1, 2], [3, 4], [4, 6], [6, 8] },其中两个数据 [1, 2] 和 [3, 4] 的马氏距离。
  • import numpy as npdef mahalanobis_distance(x, y, covariance_inv):diff = np.array(x) - np.array(y)distance = np.sqrt(np.dot(np.dot(diff, covariance_inv), diff.T))return distance# 计算协方差矩阵
    data = np.array([[1, 2], [3, 4], [4, 6], [6, 8]])  # 样本数据
    covariance_matrix = np.cov(data, rowvar=False)  # 计算协方差矩阵# 计算协方差矩阵的逆矩阵
    covariance_inv = np.linalg.inv(covariance_matrix)# 两个点
    x = [1, 2]
    y = [3, 4]# 计算马氏距离
    distance = mahalanobis_distance(x, y, covariance_inv)
    print("马氏距离:", distance)

四、编辑距离(Levenshtein Distance)

1、简介

  • 编辑距离是衡量两个字符串之间的相似度的一种度量方法。它表示通过插入、删除或替换操作将一个字符串转换为另一个字符串所需的最小编辑次数。
  • 每次修改的方式如下:
    • 增加一个字符。如:abc -> abcd
    • 删除一个字符。如:abc -> ab
    • 修改一个字符。如:abc -> abd

2、代码实现

  • 计算两个字符串 26d700000006000100520004 和 17eb00000006000100480003 之间的编辑距离。
  • def edit_distance(str1, str2):m = len(str1)n = len(str2)# 创建一个(m+1) x (n+1)的二维数组来保存编辑距离dp = [[0] * (n + 1) for _ in range(m + 1)]# 初始化第一行和第一列for i in range(m + 1):dp[i][0] = ifor j in range(n + 1):dp[0][j] = j# 动态规划计算编辑距离for i in range(1, m + 1):for j in range(1, n + 1):if str1[i - 1] == str2[j - 1]:dp[i][j] = dp[i - 1][j - 1]else:dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]) + 1return dp[m][n]str1 = "26d700000006000100520004"
    str2 = "17eb00000006000100480003"
    distance = edit_distance(str1, str2)
    print("编辑距离:", distance)

这篇关于距离度量方法——余弦相似度、汉明距离、马氏距离、编辑距离的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/888417

相关文章

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st