tensorflow.js 如何使用opencv.js通过面部特征点估算脸部姿态并绘制示意图

本文主要是介绍tensorflow.js 如何使用opencv.js通过面部特征点估算脸部姿态并绘制示意图,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、实现步骤
    • 1. 获取所需特征点的索引
    • 2. 使用opencv.js 计算俯仰角、水平角和翻滚角
      • cv.solvePnP介绍
      • cv.solvePnP原理
      • 运行代码查看效果
    • 3.绘制姿态示意直线
      • 添加canvas元素
      • 计算姿态直线坐标并绘制
  • 总结


前言

在计算机视觉领域,估算脸部姿态是一项具有挑战性但又极具应用前景的任务。通过识别脸部特征点,我们可以了解人脸的姿态,包括旋转角度、倾斜程度等信息。本文将介绍如何利用 TensorFlow.js 和 OpenCV.js 结合起来,实现通过面部特征点估算脸部姿态并绘制示意图的功能。


一、实现步骤

本文将基于文章如何使用tensorflow.js实现面部特征点检测中实现的人脸特征点检测继续根据人脸特征点实现人脸姿态的估计和绘制。

1. 获取所需特征点的索引

我们可以从示例项目看到注释的主要特征点索引如下:
请添加图片描述

2. 使用opencv.js 计算俯仰角、水平角和翻滚角

我们可以从示例项目看到计算的相关代码如下:

 var modelPoints = window.cv.matFromArray(6, 3, window.cv.CV_32F, [0.0,0.0,0.0, // Nose tip0.0,-330.0,-65.0, // Chin-225.0,170.0,-135.0, // Left eye left corner225.0,170.0,-135.0, // Right eye right corne-150.0,-150.0,-125.0, // Left Mouth corner150.0,-150.0,-125.0, // Right mouth corner]);var imagePoints = window.cv.matFromArray(6, 2, window.cv.CV_32F, [keyPoints[4].x,keyPoints[4].y, // Nose tipkeyPoints[152].x,keyPoints[152].y, // ChinkeyPoints[263].x,keyPoints[263].y, // Left eye left cornerkeyPoints[33].x,keyPoints[33].y, // Right eye right cornekeyPoints[308].x,keyPoints[308].y, // Left Mouth cornerkeyPoints[78].x,keyPoints[78].y, // Right mouth corner]);var focal_length = inputResolution.width;var center = [inputResolution.width / 2, inputResolution.height / 2];var cameraMatrix = window.cv.matFromArray(3, 3, window.cv.CV_64F, [focal_length,0,center[0],0,focal_length,center[1],0,0,1,]);// console.log("Camera Matrix", cameraMatrix.data64F);var distCoeffs = window.cv.matFromArray(4,1,window.cv.CV_64F,[0, 0, 0, 0]); // Assuming no lens distortionvar rvec = new window.cv.Mat(3, 1, window.cv.CV_64F);var tvec = new window.cv.Mat(3, 1, window.cv.CV_64F);let ret_val = window.cv.solvePnP(modelPoints,imagePoints,cameraMatrix,distCoeffs,rvec,tvec,false,window.cv.SOLVEPNP_ITERATIVE // flags);// console.log("-------ret_val--------");// console.log(ret_val);// console.log("-------rvecs--------");// console.log("rvecs.data64F", rvec.data64F);// console.log("tvecs.data64F", tvec.data64F);var rtn = getEulerAngle(rvec);var pitch = rtn[0]; // 俯仰角var yaw = rtn[1]; // 水平角var roll = rtn[2]; // 翻滚角// console.log("pitch:", pitch, "yaw:", yaw, "roll:", roll);

cv.solvePnP介绍

在计算机视觉领域,解决摄像头姿态估计(Camera Pose Estimation)问题是一项关键任务。摄像头姿态估计可以用于许多应用,例如增强现实、目标跟踪和三维重建等。OpenCV是一个广泛使用的开源计算机视觉库,其中的cv.solvePnP方法是用于解决摄像头姿态估计问题的重要工具。

cv.solvePnP方法是OpenCV库中的一个函数,用于估计摄像头的姿态。该方法可以通过已知的物体三维坐标和对应的图像中的二维坐标来计算摄像头的姿态。姿态包括摄像头的旋转和平移。

cv.solvePnP原理

cv.solvePnP方法的原理基于解决一种称为PnP问题(Perspective-n-Point Problem)的几何计算。该问题旨在通过已知的三维点和它们在图像中的投影来计算摄像头的姿态。具体来说,该方法利用了摄像头的投影模型和三维-二维点对之间的几何关系。

在解决PnP问题时,cv.solvePnP方法通常使用一种称为迭代最小化重投影误差(Iterative Minimization of Reprojection Error)的技术。该技术通过最小化实际观测到的图像点和由估计的摄像头姿态计算得到的投影点之间的误差来优化姿态估计。

cv.solvePnP方法在许多计算机视觉应用中都有广泛的应用,其中包括但不限于:
增强现实(AR):用于将虚拟对象准确地叠加到实际世界中。
目标跟踪:用于追踪目标物体的位置和姿态。
三维重建:用于从多个视角的图像中重建三维场景。

运行代码查看效果

npm i安装依赖
npm start运行代码
请添加图片描述

3.绘制姿态示意直线

添加canvas元素

请添加图片描述

计算姿态直线坐标并绘制

相关代码内容如下:

var noseEndPoint2D = new window.cv.Mat(1, 2, window.cv.CV_64F);var jacobian = new window.cv.Mat(imagePoints.rows * 2,13,window.cv.CV_64F);window.cv.projectPoints(window.cv.matFromArray(1, 3, window.cv.CV_64F, [0.0, 0.0, 1000.0]),rvec,tvec,cameraMatrix,distCoeffs,noseEndPoint2D,jacobian);// console.log(noseEndPoint2D);// 绘制线段,连接鼻尖和其它点var p1 = new window.cv.Point(Math.round(imagePoints.data32F[0]),Math.round(imagePoints.data32F[1]));var p2 = new window.cv.Point(Math.round(noseEndPoint2D.data64F[0]),Math.round(noseEndPoint2D.data64F[1]));var zeroMat = window.cv.Mat.zeros(inputResolution.height,inputResolution.width,window.cv.CV_8U);// console.log("p1", p1.x, p1.y);// console.log("p2", p2.x, p2.y);window.cv.line(zeroMat, p1, p2, new window.cv.Scalar(255, 0, 0), 2);window.cv.imshow("cv", zeroMat);

最终的效果如下
请添加图片描述


总结

感谢您看到这里,本文介绍了如何结合tensorflow.js 和 opencv.js通过面部特征点估算脸部姿态并绘制示意图,希望对您有所帮助,如果文章中存在任何问题、疏漏,或者您对文章有任何建议,请在评论区提出。


这篇关于tensorflow.js 如何使用opencv.js通过面部特征点估算脸部姿态并绘制示意图的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/887575

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

redis中使用lua脚本的原理与基本使用详解

《redis中使用lua脚本的原理与基本使用详解》在Redis中使用Lua脚本可以实现原子性操作、减少网络开销以及提高执行效率,下面小编就来和大家详细介绍一下在redis中使用lua脚本的原理... 目录Redis 执行 Lua 脚本的原理基本使用方法使用EVAL命令执行 Lua 脚本使用EVALSHA命令

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

Java Spring 中 @PostConstruct 注解使用原理及常见场景

《JavaSpring中@PostConstruct注解使用原理及常见场景》在JavaSpring中,@PostConstruct注解是一个非常实用的功能,它允许开发者在Spring容器完全初... 目录一、@PostConstruct 注解概述二、@PostConstruct 注解的基本使用2.1 基本代

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1