【三维重建工具】NeRFStudio、3D GaussianSplatting、Colmap安装与使用指南(更新中)

本文主要是介绍【三维重建工具】NeRFStudio、3D GaussianSplatting、Colmap安装与使用指南(更新中),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、NeRFStudio安装
    • 1.安装(ubuntu系统)
    • 2.安装(windows系统)
  • 二、安装tinycudann
  • 三、Colmap安装与使用
    • 1. 安装依赖
    • 2. 安装colmap
    • 3.使用colmap
    • 3.1 可视化界面使用
    • 3.2 Nerfstudio命令行调用Colmap
  • 四、使用NeRFStudio进行三维重建
  • 五、3D GaussianSplatting安装与使用(即将到来)
  • 五* CUDA安装(附C++编译器说明)

场景/物体三维重建过程:首先用colmap估计图像位姿,而后以图像和位姿作为出入,用NeRF或Gaussian Splatting进行三维重建

一、NeRFStudio安装

  简介:Nerfstudio,一个用于NeRF开发的模块化PyTorch框架。框架中用于实现基于NeRF的方法的组件即插即用,使得研究人员和相关从业者可以轻松地将NeRF集成到自己的项目中。框架的模块化设计支持实时可视化工具,导入用户真实世界捕获的数据集外(in-the-wild)数据,以及导出为视频,点云和网格表示的工具。近期,还导入了InstantNGP、3D Gaussian Splatting等最新重建算法。

在这里插入图片描述

1.安装(ubuntu系统)

  下载项目代码到本地:

git clone https://github.com/nerfstudio-project/nerfstudio.git

  可以去github直接下载zip文件,也可以按照以上命令git。网络不好可以去gitee(码云)加速。

cd nerfstudio
pip install --upgrade pip setuptools
pip install -e .

2.安装(windows系统)

2.1.安装vs2019 + cuda 11.6;
2.2.通过conda创建虚拟环境nerfstudio,依次执行如下命令:

conda create --name nerfstudio -y python=3.8
conda activate nerfstudio
python -m pip install --upgrade pip

3.3.安装依赖:
  (1).pytorch 1.13.1, 执行如下命令:

pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 -f https://download.pytorch.org/whl/torch_stable.html

  (2).tinycudann, 执行如下命令:

pip install ninja git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch

3.4.安装nerfstudio,依次执行如下命令:

git clone git@github.com:nerfstudio-project/nerfstudio.git
cd nerfstudio
pip install --upgrade pip setuptools
pip install -e .

5.安装ffmpeg, 执行如下命令:

conda install -c conda-forge ffmpeg

6.安装colmap, 执行如下命令:

conda install -c conda-forge colmap
conda install -c conda-forge mpir

7.安装hloc,依次执行如下命令: 可选,windwos上不支持pycolmap

cd ..
git clone --recursive https://github.com/cvg/Hierarchical-Localization/
cd Hierarchical-Localization/
pip install pycolmap # windows不支持
python -m pip install -e .

二、安装tinycudann

pip install git+https://github.com/NVlabs/tiny-cuda-nn/#subdirectory=bindings/torch

  这句命令不成功的,请切换gcc与g++版本,方法见最后

三、Colmap安装与使用

   colmap是用来对一系列图像进行位姿匹配,从而生成场景的三维模型(点云)。也就是你对一个场景拍摄了很多照片,colmap可以估计出每张照片的相机位置(pose,是NeRF的输入),并利用SFM算法生成三维模型。使用NeRF和Gaussian Splatting进行三维重建必备的工具。

1. 安装依赖

sudo apt-get install \git \cmake \ninja-build \build-essential \libboost-program-options-dev \libboost-filesystem-dev \libboost-graph-dev \libboost-system-dev \libeigen3-dev \libflann-dev \libfreeimage-dev \libmetis-dev \libgoogle-glog-dev \libgtest-dev \libsqlite3-dev \libglew-dev \qtbase5-dev \libqt5opengl5-dev \libcgal-dev \libceres-dev

2. 安装colmap

git clone https://github.com/colmap/colmap.git
cd colmap
mkdir build
cd build
sudo cmake .. \-D CMAKE_CUDA_COMPILER="/usr/local/cuda-11.3/bin/nvcc" ../CMakeLists.txt \-D CMAKE_CUDA_ARCHITECTURES='89'    
cd ..
sudo make -j24 
sudo make install

  注意:
  更改以上命令中cuda路径,以及最后的显卡算力(75代表Turing架构,如RTX 20系列;80代表Ampere架构,如RTX 30系列;89为RTX4080 显卡等)

3.使用colmap

3.1 可视化界面使用

使用命令打开colmap

colmap gui

打开界面如下:

在这里插入图片描述1.创建 project_cat 文件夹,把图片放 project_cat/images 下
2.执行 Automatic reconstruction 重建,如下:‘
在这里插入图片描述
在这里插入图片描述
  需要等待比较久的时间,最开始比较占用CPU,大概执行的是特征点计算和匹配一类的,后面会占用比较大的GPU使用率,GPU内存占用大概2G.

  到下面的界面后表明完成。

在这里插入图片描述
  同时介绍了可视化sparse, dense, mesh 模型结果的方法。最终效果如下:

在这里插入图片描述
一些参数说明:

Rotate model: Left-click and drag.
Shift model: Right-click or -click (-click) and drag.
Zoom model: Scroll.
Change point size: -scroll (-scroll).
Change camera size: -scroll. (红色的表示相机拍摄位置的符号)
Adjust clipping plane: -scroll. (距离观察视点一定距离的点会被 clipped)
Select point: Double-left-click point (change point size if too small). The green lines visualize the projections into the images that see the point. The opening window shows the projected locations of the point in all images.

3.2 Nerfstudio命令行调用Colmap

  除以上可视化界面直接计算图片的pose以外,还可以用Nerfstudio调用colmap:

ns-process-data images --sfm-tool hloc --feature-type superpoint --matcher-type superglue --data '/path/to/IMG'  --output-dir '/path/to/IMG' 

  其优点是利用superpoint 和 superglue深度特征,替代原始的sift提取特征

四、使用NeRFStudio进行三维重建

4.1.通过colmap生成数据集,也可从网上,如https://data.nerf.studio/nerfstudio/ 下载lego 乐高玩具测试集,并拷贝到nerfstudio的data/nerfstudio目录下,data/nerfstudio需自己创建;

4.2.采用colmap生成数据集时,需执行如下命令生成transforms.json:

ns-process-data images --data data/nerfstudio/lego/train --output-dir data/nerfstudio/lego --camera-type perspective --matching-method exhaustive --sfm-tool colmap --crop-factor 0.0 0.0 0.0 0.0

4.3.训练命令如下:迭代产生的checkpoint存储在outputs/lego/nerfacto目录下

ns-train nerfacto --data data/nerfstudio/lego --vis viewer --max-num-iterations 50000

参数为数据路路径,迭代次数等。还可添加其他参数,用命令ns-render --help查看官方文档

  训练进度如下图所示:

在这里插入图片描述
训练结束后,会显示本地浏览地址。打开web实时预览: https://viewer.nerf.studio/versions/23-04-10-0/?websocket_url=ws://localhost:7007 ,如下图所示:

在这里插入图片描述加载预训练模型,继续训练命令为:

ns-train nerfacto --data data/nerfstudio/person --load-dir outputs/person/nerfacto/2023-08-23_152364/nerfstudio_models

加载预训练模型进行可视化查看:

ns-viewer --load-config outputs/person/nerfacto/2023-04-23_152364/config.yml

训练结果可以导出为 (1).渲染视频; (2).点云;(3).mesh.

支持的自定义数据集类型:https://docs.nerf.studio/en/latest/quickstart/custom_dataset.html
ns-process-data各参数说明:https://docs.nerf.studio/en/latest/reference/cli/ns_process_data.html
官方提供的数据集:https://drive.google.com/drive/folders/19TV6kdVGcmg3cGZ1bNIUnBBMD-iQjRbG

五、3D GaussianSplatting安装与使用(即将到来)

  一周内将更新此部分内容

五* CUDA安装(附C++编译器说明)

提示:安装cuda前,首先要确保gcc与g++编译器的版本,与cuda版本相匹配。不确定的先看第5节

1、查看已安装的CUDA版本

  所有已安装的CUDA版本默认保存在/usr/local路径下,cd到该路径下通过ls命令查看:

在这里插入图片描述

2、查看当前使用的CUDA版本

  在/usr/local路径下通过 stat cuda 命令查看当前使用的CUDA版本:

3、安装新的CUDA版本——CUDA11.3为例

3.1、下载对应版本的CUDA安装包: 链接(选择下载runfile文件)

3.2、在下载文件的目录下,通过命令进行安装:

sudo sh cuda_10.0.130_410.48_linux.run
## 安装时去掉对显卡驱动的安装,如下图中去掉第一行

在这里插入图片描述
3.3、修改环境变量
  系统环境中修改cuda版本。执行以下命令,打开环境路径,在最后添加并保存:

gedit ~/.bashrc
## 默认为以上软连接的路径
export PATH=/usr/local/cuda/bin:$PATH  
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=/usr/local/cuda## 也可以指定具体路径
export PATH=/usr/local/cuda-11.3/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64:$LD_LIBRARY_PATH

保存环境变量:

source ~/.bashrc

4、CUDA版本的切换

4.1、删除原版本的cuda软连接

sudo rm -rf /usr/local/cuda

4.2、建立新的指向cuda-10.0的软连接

sudo ln -s /usr/local/cuda-10.0 /usr/local/cuda

5.切换gcc与g++版本

  cuda支持的最高版gcc与g++如下表,大部分人都需要降级gcc:

在这里插入图片描述

  安装对应版本gcc与g++(这里以cuda11.3对应的9.5为例):

sudo apt-get install gcc-9
sudo apt-get install g++-9

  随后,进入/usr/bin目录下删除旧版本gcc/g++文件(这里只是删除了软连接):

cd /usr/bin
sudo rm gcc g++

  最后,将gcc/g++和新安装的gcc-9/g+±9关联起来:

sudo ln -s gcc-9 gcc
sudo ln -s g++-9 g++

  查看最新版本:

gcc -V

  其他切换版本方法:gcc版,默认使用优先级最高的版本。设置gcc 10优先级为100,设置gcc 9优先级为70。那么默认使用gcc10。

sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 100 --slave /usr/bin/g++ g++ /usr/bin/g++-10 --slave /usr/bin/gcov gcov /usr/bin/gcov-10
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-9 70 --slave /usr/bin/g++ g++ /usr/bin/g++-9 --slave /usr/bin/gcov gcov /usr/bin/gcov-9

  随后,使用以下命令来选择版本(默认选择第1行的,序号为0)

sudo update-alternatives --config gcc

这篇关于【三维重建工具】NeRFStudio、3D GaussianSplatting、Colmap安装与使用指南(更新中)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/887275

相关文章

Python+wxPython开发一个文件属性比对工具

《Python+wxPython开发一个文件属性比对工具》在日常的文件管理工作中,我们经常会遇到同一个文件存在多个版本,或者需要验证备份文件与源文件是否一致,下面我们就来看看如何使用wxPython模... 目录引言项目背景与需求应用场景核心需求运行结果技术选型程序设计界面布局核心功能模块关键代码解析文件大

2025最新版Android Studio安装及组件配置教程(SDK、JDK、Gradle)

《2025最新版AndroidStudio安装及组件配置教程(SDK、JDK、Gradle)》:本文主要介绍2025最新版AndroidStudio安装及组件配置(SDK、JDK、Gradle... 目录原生 android 简介Android Studio必备组件一、Android Studio安装二、A

前端Visual Studio Code安装配置教程之下载、汉化、常用组件及基本操作

《前端VisualStudioCode安装配置教程之下载、汉化、常用组件及基本操作》VisualStudioCode是微软推出的一个强大的代码编辑器,功能强大,操作简单便捷,还有着良好的用户界面,... 目录一、Visual Studio Code下载二、汉化三、常用组件1、Auto Rename Tag2

win10安装及配置Gradle全过程

《win10安装及配置Gradle全过程》本文详细介绍了Gradle的下载、安装、环境变量配置以及如何修改本地仓库位置,通过这些步骤,用户可以成功安装并配置Gradle,以便进行项目构建... 目录一、Gradle下载1.1、Gradle下载地址1.2、Gradle下载步骤二、Gradle安装步骤2.1、安

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Python pickle模块的使用指南

《Pythonpickle模块的使用指南》Pythonpickle模块用于对象序列化与反序列化,支持dump/load方法及自定义类,需注意安全风险,建议在受控环境中使用,适用于模型持久化、缓存及跨... 目录python pickle 模块详解基本序列化与反序列化直接序列化为字节流自定义对象的序列化安全注

python依赖管理工具UV的安装和使用教程

《python依赖管理工具UV的安装和使用教程》UV是一个用Rust编写的Python包安装和依赖管理工具,比传统工具(如pip)有着更快、更高效的体验,:本文主要介绍python依赖管理工具UV... 目录前言一、命令安装uv二、手动编译安装2.1在archlinux安装uv的依赖工具2.2从github

JDK8(Java Development kit)的安装与配置全过程

《JDK8(JavaDevelopmentkit)的安装与配置全过程》文章简要介绍了Java的核心特点(如跨平台、JVM机制)及JDK/JRE的区别,重点讲解了如何通过配置环境变量(PATH和JA... 目录Java特点JDKJREJDK的下载,安装配置环境变量总结Java特点说起 Java,大家肯定都

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

使用python制作一款文件粉碎工具

《使用python制作一款文件粉碎工具》这篇文章主要为大家详细介绍了如何使用python制作一款文件粉碎工具,能够有效粉碎密码文件和机密Excel表格等,感兴趣的小伙伴可以了解一下... 文件粉碎工具:适用于粉碎密码文件和机密的escel表格等等,主要作用就是防止 别人用数据恢复大师把你刚删除的机密的文件恢