Akka(36): Http:Client-side-Api,Client-Connections

2024-04-09 04:48

本文主要是介绍Akka(36): Http:Client-side-Api,Client-Connections,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

   Akka-http的客户端Api应该是以HttpRequest操作为主轴的网上消息交换模式编程工具。我们知道:Akka-http是搭建在Akka-stream之上的。所以,Akka-http在客户端构建与服务器的连接通道也可以用Akka-stream的Flow来表示。这个Flow可以通过调用Http.outgoingConnection来获取:

  /*** Creates a [[akka.stream.scaladsl.Flow]] representing a prospective HTTP client connection to the given endpoint.* Every materialization of the produced flow will attempt to establish a new outgoing connection.** To configure additional settings for requests made using this method,* use the `akka.http.client` config section or pass in a [[akka.http.scaladsl.settings.ClientConnectionSettings]] explicitly.*/def outgoingConnection(host: String, port: Int = 80,localAddress: Option[InetSocketAddress] = None,settings:     ClientConnectionSettings  = ClientConnectionSettings(system),log:          LoggingAdapter            = system.log): Flow[HttpRequest, HttpResponse, Future[OutgoingConnection]] =_outgoingConnection(host, port, settings.withLocalAddressOverride(localAddress), ConnectionContext.noEncryption(), ClientTransport.TCP, log)

我们看到:这个函数实现了对Server端地址host+port的设定,返回的结果类型是Flow[HttpRequest,HttpResponse,Future[OutgoingConnection]]。这个Flow代表将输入的HttpRequest转换成输出的HttpResponse。这个转换过程包括了与Server之间的Request,Response消息交换。下面我们试着用这个Flow来向Server端发送request,并获取response:

  val connFlow: Flow[HttpRequest,HttpResponse,Future[Http.OutgoingConnection]] =Http().outgoingConnection("akka.io")def sendHttpRequest(req: HttpRequest) = {Source.single(req).via(connFlow).runWith(Sink.head)}sendHttpRequest(HttpRequest(uri="/")).andThen{case Success(resp) => println(s"got response: ${resp.status.intValue()}")case Failure(err) => println(s"request failed: ${err.getMessage}")}.andThen {case _ => sys.terminate()}

以上用法只能处理零星短小的requests,这是因为虽然connFlow是一次性实例化,但每次调用runWith都会构建新的connection,而实例化和构建新connection会拖慢系统运行速度,不适用于像streaming这样大量消息的相互传递。

上面的这种模式就是所谓Connection-Level-Client-Side-Api。这种模式可以让用户有更大程度的自由度控制connection的构建、使用及在connection上发送request的方式。一般来讲,当返回response的entity被完全消耗后系统会自动close connection,这套api还提供了一些手动方法可以在有需要的情况下手动进行connection close,如下:

 //close connection by cancelling response entityresp.entity.dataBytes.runWith(Sink.cancelled)//close connection by receiving response with close headerHttp().bindAndHandleSync({ req ⇒ HttpResponse(headers = headers.Connection("close") :: Nil) },"akka.io",80)(mat)

Akka-http客户端api还有一种实用的Host-Level-Client-Side-Api模式。这套api能自动针对每个端点维护一个连接池(connection-pool),用户只需对连接池进行配置。系统按照连接池配置自动维护池内线程的生、死、动、停。akka-http.host-connection-pool配置中max-connections,max-open-requests,pipelining-limit等控制着connection、在途request的数量,需要特别注意。针对某个端点的连接池是通过Http().cachedHostConnectionPool(endPoint)获取的。同样,获取的也是一个client-flow实例。因为系统自动维护着线程池,所以client-flow实例可以任意引用,无论调用次数与调用时间间隔。cachedHostConnectionPool()函数定义如下:

  /*** Same as [[#cachedHostConnectionPool]] but for encrypted (HTTPS) connections.** If an explicit [[ConnectionContext]] is given then it rather than the configured default [[ConnectionContext]] will be used* for encryption on the connections.** To configure additional settings for the pool (and requests made using it),* use the `akka.http.host-connection-pool` config section or pass in a [[ConnectionPoolSettings]] explicitly.*/def cachedHostConnectionPoolHttps[T](host: String, port: Int = 443,connectionContext: HttpsConnectionContext = defaultClientHttpsContext,settings:          ConnectionPoolSettings = defaultConnectionPoolSettings,log:               LoggingAdapter         = system.log)(implicit fm: Materializer): Flow[(HttpRequest, T), (Try[HttpResponse], T), HostConnectionPool] = {val cps = ConnectionPoolSetup(settings, connectionContext, log)val setup = HostConnectionPoolSetup(host, port, cps)cachedHostConnectionPool(setup)}

函数返回结果类型:Flow[(HttpRequest,T),(Try[HttpResponse],T),HostConnectionPool]。因为线程池内的线程是异步构建request和接收response的,而返回response的顺序未必按照发送request的顺序,所以需要一个tuple2的T类型标示request与返回的response进行匹配。线程池会根据idle-timeout自动终止,也可以手动通过HostConnectionPool.shutDown()实现:

  /*** Represents a connection pool to a specific target host and pool configuration.*/final case class HostConnectionPool private[http] (setup: HostConnectionPoolSetup)(private[http] val gateway: PoolGateway) { // enable test access/*** Asynchronously triggers the shutdown of the host connection pool.** The produced [[scala.concurrent.Future]] is fulfilled when the shutdown has been completed.*/def shutdown()(implicit ec: ExecutionContextExecutor): Future[Done] = gateway.shutdown()private[http] def toJava = new akka.http.javadsl.HostConnectionPool {override def setup = HostConnectionPool.this.setupoverride def shutdown(executor: ExecutionContextExecutor): CompletionStage[Done] = HostConnectionPool.this.shutdown()(executor).toJava}}

也可以通过Http().shutdownAllConnectionPools()一次性终止ActorSystem内所有线程池:

  /*** Triggers an orderly shutdown of all host connections pools currently maintained by the [[akka.actor.ActorSystem]].* The returned future is completed when all pools that were live at the time of this method call* have completed their shutdown process.** If existing pool client flows are re-used or new ones materialized concurrently with or after this* method call the respective connection pools will be restarted and not contribute to the returned future.*/def shutdownAllConnectionPools(): Future[Unit] = {val shutdownCompletedPromise = Promise[Done]()poolMasterActorRef ! ShutdownAll(shutdownCompletedPromise)shutdownCompletedPromise.future.map(_ ⇒ ())(system.dispatcher)}

我们用cachedHostConnectionPool获取一个client-flow实例:

Flow[(HttpRequest,T),(Try[HttpResponse],T),HostConnectionPool]后就可以进行输入HttpRequest到HttpResponse的转换处理。如下面的例子:

  val pooledFlow: Flow[(HttpRequest,Int),(Try[HttpResponse],Int),Http.HostConnectionPool] =Http().cachedHostConnectionPool[Int](host="akka.io",port=80)def sendPoolRequest(req: HttpRequest, marker: Int) = {Source.single(req -> marker).via(pooledFlow).runWith(Sink.head)}sendPoolRequest(HttpRequest(uri="/"), 1).andThen{case Success((tryResp, mk)) =>tryResp match {case Success(resp) => println(s"got response: ${resp.status.intValue()}")case Failure(err) => println(s"request failed: ${err.getMessage}")}case Failure(err) => println(s"request failed: ${err.getMessage}")}.andThen {case _ => sys.terminate()}

在以上这个例子里实际同样会遇到Connection-Level-Api所遇的的问题,这是因为获取的线程池内的线程还是有限的,只能缓解因为request速率超出response速率所造成的request积压。目前最有效的方法还是通过使用一个queue来暂存request后再逐个处理:

    val QueueSize = 10// This idea came initially from this blog post:// http://kazuhiro.github.io/scala/akka/akka-http/akka-streams/2016/01/31/connection-pooling-with-akka-http-and-source-queue.htmlval poolClientFlow = Http().cachedHostConnectionPool[Promise[HttpResponse]]("akka.io")val queue =Source.queue[(HttpRequest, Promise[HttpResponse])](QueueSize, OverflowStrategy.dropNew).via(poolClientFlow).toMat(Sink.foreach({case ((Success(resp), p)) => p.success(resp)case ((Failure(e), p))    => p.failure(e)}))(Keep.left).run()def queueRequest(request: HttpRequest): Future[HttpResponse] = {val responsePromise = Promise[HttpResponse]()queue.offer(request -> responsePromise).flatMap {case QueueOfferResult.Enqueued    => responsePromise.futurecase QueueOfferResult.Dropped     => Future.failed(new RuntimeException("Queue overflowed. Try again later."))case QueueOfferResult.Failure(ex) => Future.failed(ex)case QueueOfferResult.QueueClosed => Future.failed(new RuntimeException("Queue was closed (pool shut down) while running the request. Try again later."))}}val responseFuture: Future[HttpResponse] = queueRequest(HttpRequest(uri = "/"))responseFuture.andThen {case Success(resp) => println(s"got response: ${resp.status.intValue()}")case Failure(err) => println(s"request failed: ${err.getMessage}")}.andThen {case _ => sys.terminate()}

下面是本次Akka-http-client-side-connection讨论的示范源代码:

import akka.actor._
import akka.http.javadsl.{HostConnectionPool, OutgoingConnection}
import akka.stream._
import akka.stream.scaladsl._
import akka.http.scaladsl.Http
import akka.http.scaladsl.model._import scala.concurrent._
import scala.util._object ClientApiDemo extends App {implicit val sys = ActorSystem("ClientSys")implicit val mat = ActorMaterializer()implicit val ec = sys.dispatcher
/*val connFlow: Flow[HttpRequest,HttpResponse,Future[Http.OutgoingConnection]] =Http().outgoingConnection("www.sina.com")def sendHttpRequest(req: HttpRequest) = {Source.single(req).via(connFlow).runWith(Sink.head)}sendHttpRequest(HttpRequest(uri="/")).andThen{case Success(resp) =>//close connection by cancelling response entityresp.entity.dataBytes.runWith(Sink.cancelled)println(s"got response: ${resp.status.intValue()}")case Failure(err) => println(s"request failed: ${err.getMessage}")}//   .andThen {case _ => sys.terminate()}//close connection by receiving response with close headerHttp().bindAndHandleSync({ req ⇒ HttpResponse(headers = headers.Connection("close") :: Nil) },"akka.io",80)(mat)val pooledFlow: Flow[(HttpRequest,Int),(Try[HttpResponse],Int),Http.HostConnectionPool] =Http().cachedHostConnectionPool[Int](host="akka.io",port=80)def sendPoolRequest(req: HttpRequest, marker: Int) = {Source.single(req -> marker).via(pooledFlow).runWith(Sink.head)}sendPoolRequest(HttpRequest(uri="/"), 1).andThen{case Success((tryResp, mk)) =>tryResp match {case Success(resp) => println(s"got response: ${resp.status.intValue()}")case Failure(err) => println(s"request failed: ${err.getMessage}")}case Failure(err) => println(s"request failed: ${err.getMessage}")}.andThen {case _ => sys.terminate()}
*/val QueueSize = 10// This idea came initially from this blog post:// http://kazuhiro.github.io/scala/akka/akka-http/akka-streams/2016/01/31/connection-pooling-with-akka-http-and-source-queue.htmlval poolClientFlow = Http().cachedHostConnectionPool[Promise[HttpResponse]]("akka.io")val queue =Source.queue[(HttpRequest, Promise[HttpResponse])](QueueSize, OverflowStrategy.dropNew).via(poolClientFlow).toMat(Sink.foreach({case ((Success(resp), p)) => p.success(resp)case ((Failure(e), p))    => p.failure(e)}))(Keep.left).run()def queueRequest(request: HttpRequest): Future[HttpResponse] = {val responsePromise = Promise[HttpResponse]()queue.offer(request -> responsePromise).flatMap {case QueueOfferResult.Enqueued    => responsePromise.futurecase QueueOfferResult.Dropped     => Future.failed(new RuntimeException("Queue overflowed. Try again later."))case QueueOfferResult.Failure(ex) => Future.failed(ex)case QueueOfferResult.QueueClosed => Future.failed(new RuntimeException("Queue was closed (pool shut down) while running the request. Try again later."))}}val responseFuture: Future[HttpResponse] = queueRequest(HttpRequest(uri = "/"))responseFuture.andThen {case Success(resp) => println(s"got response: ${resp.status.intValue()}")case Failure(err) => println(s"request failed: ${err.getMessage}")}.andThen {case _ => sys.terminate()}}






这篇关于Akka(36): Http:Client-side-Api,Client-Connections的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/887204

相关文章

使用Go调用第三方API的方法详解

《使用Go调用第三方API的方法详解》在现代应用开发中,调用第三方API是非常常见的场景,比如获取天气预报、翻译文本、发送短信等,Go作为一门高效并发的编程语言,拥有强大的标准库和丰富的第三方库,可以... 目录引言一、准备工作二、案例1:调用天气查询 API1. 注册并获取 API Key2. 代码实现3

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

HTTP 与 SpringBoot 参数提交与接收协议方式

《HTTP与SpringBoot参数提交与接收协议方式》HTTP参数提交方式包括URL查询、表单、JSON/XML、路径变量、头部、Cookie、GraphQL、WebSocket和SSE,依据... 目录HTTP 协议支持多种参数提交方式,主要取决于请求方法(Method)和内容类型(Content-Ty

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

Python用Flask封装API及调用详解

《Python用Flask封装API及调用详解》本文介绍Flask的优势(轻量、灵活、易扩展),对比GET/POST表单/JSON请求方式,涵盖错误处理、开发建议及生产环境部署注意事项... 目录一、Flask的优势一、基础设置二、GET请求方式服务端代码客户端调用三、POST表单方式服务端代码客户端调用四

Python WSGI HTTP服务器Gunicorn使用详解

《PythonWSGIHTTP服务器Gunicorn使用详解》Gunicorn是Python的WSGI服务器,用于部署Flask/Django应用,性能高且稳定,支持多Worker类型与配置,可处... 目录一、什么是 Gunicorn?二、为什么需要Gunicorn?三、安装Gunicorn四、基本使用启

SpringBoot结合Knife4j进行API分组授权管理配置详解

《SpringBoot结合Knife4j进行API分组授权管理配置详解》在现代的微服务架构中,API文档和授权管理是不可或缺的一部分,本文将介绍如何在SpringBoot应用中集成Knife4j,并进... 目录环境准备配置 Swagger配置 Swagger OpenAPI自定义 Swagger UI 底