restapi(8)- restapi-sql:用户自主的服务

2024-04-09 04:38

本文主要是介绍restapi(8)- restapi-sql:用户自主的服务,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  学习函数式编程初衷是看到自己熟悉的oop编程语言和sql数据库在现代商业社会中前景暗淡,准备完全放弃windows技术栈转到分布式大数据技术领域的,但是在现实中理想总是不如人意的。本来想在一个规模较小的公司展展拳脚,以为小公司会少点历史包袱,有利于全面技术改造。但现实是:即使是小公司,一旦有个成熟的产品,那么进行全面的技术更新基本上是不可能的了,因为公司要生存,开发人员很难新旧技术之间随时切换。除非有狂热的热情,员工怠慢甚至抵制情绪不容易解决。只能采取逐步切换方式:保留原有产品的后期维护不动,新产品开发用一些新的技术。在我们这里的情况就是:以前一堆c#、sqlserver的东西必须保留,新的功能比如大数据、ai、识别等必须用新的手段如scala、python、dart、akka、kafka、cassandra、mongodb来开发。好了,新旧两个开发平台之间的软件系统对接又变成了一个问题。

   现在我们这里又个需求:把在linux-ubuntu akka-cluster集群环境里mongodb里数据处理的结果传给windows server下SQLServer里。这是一种典型的异系统集成场景。我的解决方案是通过一个restapi服务作为两个系统的数据桥梁,这个restapi的最基本要求是:

1、支持任何操作系统前端:这个没什么问题,在http层上通过json交换数据

2、能读写mongodb:在前面讨论的restapi-mongo已经实现了这一功能

3、能读写windows server环境下的sqlserver:这个是本篇讨论的主题

前面曾经实现了一个jdbc-engine项目,基于scalikejdbc,不过只示范了slick-h2相关的功能。现在需要sqlserver-jdbc驱动,然后试试能不能在JVM里驱动windows下的sqlserver。maven里找不到sqlserver的驱动,但从微软官网可以下载mssql-jdbc-7.0.0.jre8.jar。这是个jar,在sbt里称作unmanagedjar,不能摆在build.sbt的dependency里。这个需要摆在项目根目录下的lib目录下即可(也可以在放在build.sbt里unmanagedBase :=?? 指定的路径下)。然后是数据库连接,下面是可以使用sqlserver的application.conf配置文件内容:

# JDBC settings
prod {db {h2 {driver = "org.h2.Driver"url = "jdbc:h2:tcp://localhost/~/slickdemo"user = ""password = ""poolFactoryName = "hikaricp"numThreads = 10maxConnections = 12minConnections = 4keepAliveConnection = true}mysql {driver = "com.mysql.cj.jdbc.Driver"url = "jdbc:mysql://localhost:3306/testdb"user = "root"password = "123"poolFactoryName = "hikaricp"numThreads = 10maxConnections = 12minConnections = 4keepAliveConnection = true}postgres {driver = "org.postgresql.Driver"url = "jdbc:postgresql://localhost:5432/testdb"user = "root"password = "123"poolFactoryName = "hikaricp"numThreads = 10maxConnections = 12minConnections = 4keepAliveConnection = true}mssql {driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"url = "jdbc:sqlserver://192.168.11.164:1433;integratedSecurity=false;Connect Timeout=3000"user = "sa"password = "Tiger2020"poolFactoryName = "hikaricp"numThreads = 10maxConnections = 12minConnections = 4keepAliveConnection = trueconnectionTimeout = 3000}termtxns {driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"url = "jdbc:sqlserver://192.168.11.164:1433;DATABASE=TERMTXNS;integratedSecurity=false;Connect Timeout=3000"user = "sa"password = "Tiger2020"poolFactoryName = "hikaricp"numThreads = 10maxConnections = 12minConnections = 4keepAliveConnection = trueconnectionTimeout = 3000}crmdb {driver = "com.microsoft.sqlserver.jdbc.SQLServerDriver"url = "jdbc:sqlserver://192.168.11.164:1433;DATABASE=CRMDB;integratedSecurity=false;Connect Timeout=3000"user = "sa"password = "Tiger2020"poolFactoryName = "hikaricp"numThreads = 10maxConnections = 12minConnections = 4keepAliveConnection = trueconnectionTimeout = 3000}}# scallikejdbc Global settingsscalikejdbc.global.loggingSQLAndTime.enabled = truescalikejdbc.global.loggingSQLAndTime.logLevel = infoscalikejdbc.global.loggingSQLAndTime.warningEnabled = truescalikejdbc.global.loggingSQLAndTime.warningThresholdMillis = 1000scalikejdbc.global.loggingSQLAndTime.warningLogLevel = warnscalikejdbc.global.loggingSQLAndTime.singleLineMode = falsescalikejdbc.global.loggingSQLAndTime.printUnprocessedStackTrace = falsescalikejdbc.global.loggingSQLAndTime.stackTraceDepth = 10
}

这个文件里的mssql,termtxns,crmdb段落都是给sqlserver的,它们都使用hikaricp线程池管理。

在jdbc-engine里启动数据库方式如下:

  ConfigDBsWithEnv("prod").setup('termtxns)ConfigDBsWithEnv("prod").setup('crmdb)ConfigDBsWithEnv("prod").loadGlobalSettings()

这段打开了在配置文件中用termtxns,crmdb注明的数据库。

下面是SqlHttpServer.scala的代码:

package com.datatech.rest.sql
import akka.http.scaladsl.Http
import akka.http.scaladsl.server.Directives._
import pdi.jwt._
import AuthBase._
import MockUserAuthService._
import com.datatech.sdp.jdbc.config.ConfigDBsWithEnvimport akka.actor.ActorSystem
import akka.stream.ActorMaterializerimport Repo._
import SqlRoute._object SqlHttpServer extends App {implicit val httpSys = ActorSystem("sql-http-sys")implicit val httpMat = ActorMaterializer()implicit val httpEC = httpSys.dispatcherConfigDBsWithEnv("prod").setup('termtxns)ConfigDBsWithEnv("prod").setup('crmdb)ConfigDBsWithEnv("prod").loadGlobalSettings()implicit val authenticator = new AuthBase().withAlgorithm(JwtAlgorithm.HS256).withSecretKey("OpenSesame").withUserFunc(getValidUser)val route =path("auth") {authenticateBasic(realm = "auth", authenticator.getUserInfo) { userinfo =>post { complete(authenticator.issueJwt(userinfo))}}} ~pathPrefix("api") {authenticateOAuth2(realm = "api", authenticator.authenticateToken) { token =>new SqlRoute("sql", token)(new JDBCRepo).route// ~ ...}}val (port, host) = (50081,"192.168.11.189")val bindingFuture = Http().bindAndHandle(route,host,port)println(s"Server running at $host $port. Press any key to exit ...")scala.io.StdIn.readLine()bindingFuture.flatMap(_.unbind()).onComplete(_ => httpSys.terminate())}

服务入口在http://mydemo.com/api/sql,服务包括get,post,put三类,看看这个SqlRoute:

package com.datatech.rest.sql
import akka.http.scaladsl.server.Directives
import akka.stream.ActorMaterializer
import akka.http.scaladsl.model._
import akka.actor.ActorSystem
import com.datatech.rest.sql.Repo.JDBCRepo
import akka.http.scaladsl.common._
import spray.json.DefaultJsonProtocol
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupporttrait JsFormats extends SprayJsonSupport with DefaultJsonProtocol
object JsConverters extends JsFormats {import SqlModels._implicit val brandFormat = jsonFormat2(Brand)implicit val customerFormat = jsonFormat6(Customer)
}object SqlRoute {import JsConverters._implicit val jsonStreamingSupport = EntityStreamingSupport.json().withParallelMarshalling(parallelism = 8, unordered = false)class SqlRoute(val pathName: String, val jwt: String)(repo: JDBCRepo)(implicit  sys: ActorSystem, mat: ActorMaterializer) extends Directives with JsonConverter {val route = pathPrefix(pathName) {path(Segment / Remaining) { case (db, tbl) =>(get & parameter('sqltext)) { sql => {val rsc = new RSConverterval rows = repo.query[Map[String,Any]](db, sql, rsc.resultSet2Map)complete(rows.map(m => toJson(m)))}} ~ (post & parameter('sqltext)) { sql =>entity(as[String]){ json =>repo.batchInsert(db,tbl,sql,json)complete(StatusCodes.OK)}} ~ put {entity(as[Seq[String]]) { sqls =>repo.update(db, sqls)complete(StatusCodes.OK)}}}}}
}

jdbc-engine的特点是可以用字符类型的sql语句来操作。所以我们可以通过传递字符串型的sql语句来实现服务调用,很通用。restapi-sql提供的是对服务器端sqlserver的普通操作,包括读get,写入post,更改put。这些sqlserver操作部分是在JDBCRepo里的:

package com.datatech.rest.sql
import com.datatech.sdp.jdbc.engine.JDBCEngine._
import com.datatech.sdp.jdbc.engine.{JDBCQueryContext, JDBCUpdateContext}
import scalikejdbc._
import akka.stream.ActorMaterializer
import com.datatech.sdp.result.DBOResult.DBOResult
import akka.stream.scaladsl._
import scala.concurrent._
import SqlModels._object Repo {class JDBCRepo(implicit ec: ExecutionContextExecutor, mat: ActorMaterializer) {def query[R](db: String, sqlText: String, toRow: WrappedResultSet => R): Source[R,Any] = {//construct the contextval ctx = JDBCQueryContext(dbName = Symbol(db),statement = sqlText)jdbcAkkaStream(ctx,toRow)}def query(db: String, tbl: String, sqlText: String) = {//construct the contextval ctx = JDBCQueryContext(dbName = Symbol(db),statement = sqlText)jdbcQueryResult[Vector,RS](ctx,getConverter(tbl)).toFuture[Vector[RS]]}def update(db: String, sqlTexts: Seq[String]): DBOResult[Seq[Long]] = {val ctx = JDBCUpdateContext(dbName = Symbol(db),statements = sqlTexts)jdbcTxUpdates(ctx)}def bulkInsert[P](db: String, sqlText: String, prepParams: P => Seq[Any], params: Source[P,_]) = {val insertAction = JDBCActionStream(dbName = Symbol(db),parallelism = 4,processInOrder = false,statement = sqlText,prepareParams = prepParams)params.via(insertAction.performOnRow).to(Sink.ignore).run()}def batchInsert(db: String, tbl: String, sqlText: String, jsonParams: String):DBOResult[Seq[Long]] = {val ctx = JDBCUpdateContext(dbName = Symbol(db),statements = Seq(sqlText),batch = true,parameters = getSeqParams(jsonParams,sqlText))jdbcBatchUpdate[Seq](ctx)}}import monix.execution.Scheduler.Implicits.globalimplicit class DBResultToFuture(dbr: DBOResult[_]){def toFuture[R] = {dbr.value.value.runToFuture.map {eor =>eor match {case Right(or) => or match {case Some(r) => r.asInstanceOf[R]case None => throw new RuntimeException("Operation produced None result!")}case Left(err) => throw new RuntimeException(err)}}}}
}

读query部分即 def query[R](db: String, sqlText: String, toRow: WrappedResultSet => R): Source[R,Any] = {...} 这个函数返回Source[R,Any],下面我们好好谈谈这个R:R是读的结果,通常是某个类或model,比如读取Person记录返回一组Person类的实例。这里有一种强类型的感觉。一开始我也是随大流坚持建model后用toJson[E],fromJson[E]这样做线上数据转换。现在的问题是restapi-sql是一项公共服务,使用者知道sqlserver上有些什么表,然后希望通过sql语句来从这些表里读取数据。这些sql语句可能超出表的界限如sql join, union等,如果我们坚持每个返回结果都必须有个对应的model,那么显然就会牺牲这个服务的通用性。实际上,http线上数据交换本身就不可能是强类型的,因为经过了json转换。对于json转换来说,只要求字段名称、字段类型对称就行了。至于从什么类型转换成了另一个什么类型都没问题。所以,字段名+字段值的表现形式不就是Map[K,V]吗,我们就用Map[K,V]作为万能model就行了,没人知道。也就是说我们可以把jdbc的ResultSet转成Map[K,V]然后再转成json,接收方可以获取与model同样的字段名和字段值。好,就把ResultSet转成Map[String,Any]:

package com.datatech.rest.sql
import scalikejdbc._
import java.sql.ResultSetMetaData
class RSConverter {import RSConverterUtil._var rsMeta: ResultSetMetaData = _var columnCount: Int = 0var rsFields: List[(String,String)] = List[(String,String)]()def getFieldsInfo:List[(String,String)] =( 1 until columnCount).foldLeft(List[(String,String)]()) {case (cons,i) =>(rsMeta.getColumnName(i) -> rsMeta.getColumnTypeName(i)) :: cons}def resultSet2Map(rs: WrappedResultSet): Map[String,Any] = {if(columnCount == 0) {rsMeta =  rs.underlying.getMetaDatacolumnCount = rsMeta.getColumnCountrsFields = getFieldsInfo}rsFields.foldLeft(Map[String,Any]()) {case (m,(n,t)) =>m + (n -> rsFieldValue(n,t,rs))}}
}
object RSConverterUtil {import scala.collection.immutable.TreeMapdef map2Params(stm: String, m: Map[String,Any]): Seq[Any] = {val sortedParams = m.foldLeft(TreeMap[Int,Any]()) {case (t,(k,v)) => t + (stm.indexOfSlice(k) -> v)}sortedParams.map(_._2).toSeq}def rsFieldValue(fldname: String, fldType: String, rs: WrappedResultSet): Any = fldType match {case "LONGVARCHAR" => rs.string(fldname)case "VARCHAR" => rs.string(fldname)case "CHAR" => rs.string(fldname)case "BIT" => rs.boolean(fldname)case "TIME" => rs.time(fldname)case "TIMESTAMP" => rs.timestamp(fldname)case "ARRAY" => rs.array(fldname)case "NUMERIC" => rs.bigDecimal(fldname)case "BLOB" => rs.blob(fldname)case "TINYINT" => rs.byte(fldname)case "VARBINARY" => rs.bytes(fldname)case "BINARY" => rs.bytes(fldname)case "CLOB" => rs.clob(fldname)case "DATE" => rs.date(fldname)case "DOUBLE" => rs.double(fldname)case "REAL" => rs.float(fldname)case "FLOAT" => rs.float(fldname)case "INTEGER" => rs.int(fldname)case "SMALLINT" => rs.int(fldname)case "Option[Int]" => rs.intOpt(fldname)case "BIGINT" => rs.long(fldname)}
}

下面是个调用query服务的例子:

    val getAllRequest = HttpRequest(HttpMethods.GET,uri = "http://192.168.11.189:50081/api/sql/termtxns/brand?sqltext=SELECT%20*%20FROM%20BRAND",).addHeader(authentication)(for {response <- Http().singleRequest(getAllRequest)message <- Unmarshal(response.entity).to[String]} yield message).andThen {case Success(msg) => println(s"Received message: $msg")case Failure(err) => println(s"Error: ${err.getMessage}")}

特点是我只需要提供sql语句,服务就会返回一个json数组,然后我怎么转换json就随我高兴了。

这篇关于restapi(8)- restapi-sql:用户自主的服务的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/887194

相关文章

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

最新Spring Security的基于内存用户认证方式

《最新SpringSecurity的基于内存用户认证方式》本文讲解SpringSecurity内存认证配置,适用于开发、测试等场景,通过代码创建用户及权限管理,支持密码加密,虽简单但不持久化,生产环... 目录1. 前言2. 因何选择内存认证?3. 基础配置实战❶ 创建Spring Security配置文件

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

MySQL 强制使用特定索引的操作

《MySQL强制使用特定索引的操作》MySQL可通过FORCEINDEX、USEINDEX等语法强制查询使用特定索引,但优化器可能不采纳,需结合EXPLAIN分析执行计划,避免性能下降,注意版本差异... 目录1. 使用FORCE INDEX语法2. 使用USE INDEX语法3. 使用IGNORE IND

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也