akka-grpc - 应用案例

2024-04-09 04:32
文章标签 应用 案例 grpc akka

本文主要是介绍akka-grpc - 应用案例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  上期说道:http/2还属于一种不算普及的技术协议,可能目前只适合用于内部系统集成,现在开始大面积介入可能为时尚早。不过有些项目需求不等人,需要使用这项技术,所以研究了一下akka-grpc,写了一篇介绍。本想到此为止,继续其它项目。想想这样做法有点不负责任,像是草草收场。毕竟用akka-grpc做了些事情,想想还是再写这篇跟大家分享使用kka-grpc的过程。

我说过,了解akka-grpc的主要目的还是在protobuf的应用上。这是一种高效率的序列化协议。刚好,公司有这么个项目,是一个图像处理平台:把很多图片拍摄终端的图像传上平台进行商品识别、OCR等图像处理。由于终端数量多、图像处理又特别消耗内存、CPU等计算资源、又要求快速响应,所以第一考虑就是使用akka-cluster把图像处理任务分割到多个节点上并行处理。这里就需要仔细考虑图片在终端到平台、然后集群节点与点actor间的传输效率了。如何在akka系统里使用protobuf格式的数据正是本篇讨论和示范的目的。

akka-grpc应用一般从IDL文件里消息类型和服务函数的定义开始,如下面这个.proto文件示范:

syntax = "proto3";import "google/protobuf/wrappers.proto";
import "google/protobuf/any.proto";
import "scalapb/scalapb.proto";option (scalapb.options) = {// don't append file name to packageflat_package: true// generate one Scala file for all messages (services still get their own file)single_file: true// add imports to generated file// useful when extending traits or using custom types// import: "io.ontherocks.hellogrpc.RockingMessage"// code to put at the top of generated file// works only with `single_file: true`//preamble: "sealed trait SomeSealedTrait"
};package com.datatech.pos.abs;message UCredential {string userid = 1;string password = 2;
}message JWToken {string jwt = 1;
}message Picture {int32 num = 1;bytes blob = 2;
}
message Capture {string ean = 1;bytes cover1 = 2;bytes cover2 = 3;
}message Book {string ean = 1;string ver = 2;string isbn = 3;string title = 4;string publisher = 5;double price = 6;bytes cover1 = 7;bytes cover2 = 8;
}message QueryResult {int32  sts         = 1;string msg         = 2;Book bookinfo   = 3;
}service Services {rpc GetAuthToken(UCredential) returns (JWToken) {};rpc SavePicture(Picture) returns (QueryResult) {};rpc GetPicture(Picture) returns (Picture) {};
//  rpc SaveCapture(Capture) returns (QueryResult) {};
//  rpc GetCapture(Capture) returns (Capture) {};
//  rpc GetBookInfo(Capture) returns (QueryResult) {};
}

因为这次示范针对的是protobuf的使用,所以就拣了SavePicture,GetPicture这两项服务函数。JWToken只是用户身份凭证,集群分片shard-entityId是以用户凭证为基础的,所以平台需要通过JWT进行跨节点任务指派以实现分布式图像处理运算。

下面就要在编译器插件自动产生的基础服务接口代码基础上进行具体的服务功能实现。这部分主要是对接口函数的实现(oveerride):

class gRPCServices(trace: Boolean, system: ActorSystem, sharding: ClusterSharding)(implicit  waitResponseTimeout: Timeout, authenticator: AuthBase) extends ServicesPowerApi with LogSupport {implicit val ec = system.dispatcherlog.stepOn = traceoverride def getAuthToken(request: UCredential, meta: Metadata): Future[JWToken] = {val entityRef = sharding.entityRefFor(Authenticator.EntityKey, UUID.randomUUID.toString)val jwtResp = for {ui <- entityRef.ask[Authenticator.Response](Authenticator.GetUserInfo(request.userid, _)).map {case Authenticator.UserInfo(info) => infocase _ => Map[String, Any]()}jwt <- entityRef.ask[Authenticator.Response](Authenticator.GetToken(ui, _))} yield jwtjwtResp.map {case Authenticator.JWToken(jwt) =>if (jwt.nonEmpty) JWToken(jwt)else throw new Exception("身份验证失败!无法提供凭证。")case _ => throw new Exception("身份验证失败!无法提供凭证。")}}override def savePicture(in: Picture, metadata: Metadata): Future[QueryResult] = {val jwt = getJwt(metadata).getOrElse("")val ids = authenticator.shopIdFromJwt(jwt).getOrElse(("","","","",""))val (shopId, posId, termId, impurl,devId) = idsval entityRef = sharding.entityRefFor(ImgProcessor.EntityKey, s"$shopId:$posId")val futResp = entityRef.ask[ImgProcessor.Response](ImgProcessor.SaveImage(in, _)).map {case ImgProcessor.ValidImgPro(img) => QueryResult(sts = 0, msg = "picture saved.")case ImgProcessor.FailedImgPro(msg) => QueryResult(sts = -1, msg = msg)}futResp}override def getPicture(in: Picture, metadata: Metadata): Future[Picture] = {val jwt = getJwt(metadata).getOrElse("")val ids = authenticator.shopIdFromJwt(jwt).getOrElse(("","","","",""))val (shopId, posId, termId, impurl,devId) = idsval entityRef = sharding.entityRefFor(ImgProcessor.EntityKey, s"$shopId:$posId")val futResp = entityRef.ask[ImgProcessor.Response](ImgProcessor.GetImage(in.num, _)).map {case ImgProcessor.ValidImgPro(img) => imgcase ImgProcessor.FailedImgPro(msg) => Picture(-1, ByteString.EMPTY)}futResp}def getJwt(metadata: Metadata): Option[String] = {metadata.getText("bearer")}
}

由于是通过PowerApi模式产生的接口代码,所以接口函数都带有MetaData参数,代表HttpRequest header集合。可以看到:服务函数实现都是通过entityRef,一个分片调度器分配到集群某个节点ImgProcessor.EntityKey类型的entity-actor上进行的。shopId:posId就是代表为某用户构建的entityId,这个是通过用户在Request中提供的MetaData参数中jwt解析得出的。

可以看到,具体服务提供是通过集群的分片实现的。下面是这个分片的代码示范:

      log.step(s"initializing sharding for ${ImgProcessor.EntityKey} ...")(MachineId("",""))val imgEntityType = Entity(ImgProcessor.EntityKey) { entityContext =>ImgProcessor(entityContext.shard,mgoHosts,entityContext.entityId,trace,keepAlive)}.withStopMessage(ImgProcessor.StopWorker)sharding.init(imgEntityType)

上面imgEntityType就是shard-entity类型,其实就是按用户提供的jwt在任意集群节点上实时构建的一个opencv图像处理器。下面是这个entity-actor的示范代码:

object ImgProcessor extends LogSupport {sealed trait Command extends CborSerializablecase class SaveImage(img: Picture, replyTo: ActorRef[Response]) extends Commandcase class GetImage(imgnum: Int,replyTo: ActorRef[Response]) extends Commandsealed trait Response extends CborSerializablecase class ValidImgPro(img: Picture) extends Responsecase class FailedImgPro(msg: String) extends Responsedef apply(shard: ActorRef[ClusterSharding.ShardCommand],mgoHosts: List[String], entityId: String, trace: Boolean, keepAlive: FiniteDuration): Behavior[Command] = {val (shopId,posId) = entityId.split(':').toList match {case sid::pid::Nil  => (sid,pid) }implicit val loc = Messages.MachineId(shopId,posId)log.stepOn = traceBehaviors.setup[Command] { ctx =>implicit val ec = ctx.executionContextctx.setReceiveTimeout(keepAlive, Idle)Behaviors.withTimers[Command] { timer =>Behaviors.receiveMessage[Command] {case SaveImage(img, replyTo) =>log.step(s"ImgProcessor: SaveImage(${img.num})")implicit val client = mongoClient(mgoHosts)maybeMgoClient = Some(client)ctx.pipeToSelf(savePicture(img)) {case Success(_) => {replyTo ! ValidImgPro(img)Done(loc.shopid, loc.posid, s"saved image #${img.num}.")}case Failure(err) =>log.error(s"ImgProcessor: SaveImage Error: ${err.getMessage}")replyTo ! FailedImgPro(err.getMessage)Done(loc.shopid, loc.posid, s"SaveImage with error: ${err.getMessage}")}Behaviors.samecase GetImage(imgnum, replyTo) =>
...}}

整个图片传输是通过actor的消息实现的。akka消息支持多种序列化格式,包括protobuf, 在配置文件.conf里定义:

akka {loglevel = INFOactor {provider = clusterserializers {jackson-cbor = "akka.serialization.jackson.JacksonCborSerializer"proto = "akka.remote.serialization.ProtobufSerializer"}serialization-bindings {"com.datatech.pos.abs.CborSerializable" = jackson-cbor"scalapb.GeneratedMessage" = proto}}
}

grpc server 基本上是个标准模块,不同的只是service参数:

class gRPCServer(host: String, port: Int) extends LogSupport {def runServer(system: ActorSystem[_], service: gRPCServices): Future[Http.ServerBinding] = {implicit val classic = system.toClassicimplicit val ec: ExecutionContext = system.executionContext// Create service handlersval serviceHandler: HttpRequest => Future[HttpResponse] =ServicesPowerApiHandler(service)// Bind service handler servers to localhost:8080/8081val binding = Http().bindAndHandleAsync(serviceHandler,interface = host,port = port,connectionContext = HttpConnectionContext())// report successful bindingbinding.foreach { binding => println(s"******* startup gRPC-server on: port = $port  *******") }binding//#server}
}

下面是客户端测试代码:

object gRPCTestClient {def main(args: Array[String]): Unit = {val config_onenode = ConfigFactory.load("onenode")implicit val sys = ActorSystem("grpc-client", config_onenode)implicit val ec = sys.dispatcherval clientSettings = GrpcClientSettings.fromConfig(Services.name)//   val clientSettings = GrpcClientSettings.connectToServiceAt("192.168.11.189", 50052);implicit val client = ServicesClient(clientSettings)val futJwt = client.getAuthToken(UCredential("9013", "123456"))val jwt = Await.result(futJwt, 5.seconds).jwtprintln(s"got jwt: ${jwt}")scala.io.StdIn.readLine()val bytes = FileStreaming.FileToByteArray("books/59c10d099b26e.jpg")val mat = bytesToMat(bytes)show(mat,"sent picture")scala.io.StdIn.readLine()val picture = Picture(111,marshal(bytes))val futQR = client.savePicture().addHeader("Bearer", jwt).invoke(Picture(111,marshal(bytes)))futQR.onComplete {case Success(qr) => println(s"Saving Success: ${qr.msg}")case Failure(err) => println(s"Saving Error: ${err.getMessage}")}scala.io.StdIn.readLine()val futPic = client.getPicture().addHeader("Bearer", jwt).invoke(Picture(111,ByteString.EMPTY))futPic.onComplete {case Success(pic) =>val image = bytesToMat(unmarshal(pic.blob))show(image, s"picture:${pic.num}")case Failure(err) => println(s"Reading Error: ${err.getMessage}")}scala.io.StdIn.readLine()sys.terminate()}
}

基本流程是:先通过getAuthToken获取jwt;在调用服务时通过addHeader("bearer",jwt)把jwt随着函数调用一起提交给服务端。

客户端设置可以在配置文件中定义:

akka {loglevel = INFOgrpc.client {"com.datatech.pos.abs.Services" {host = 192.168.11.189port = 52051override-authority = foo.test.google.fruse-tls = false}}}

 

这篇关于akka-grpc - 应用案例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/887179

相关文章

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

深入浅出SpringBoot WebSocket构建实时应用全面指南

《深入浅出SpringBootWebSocket构建实时应用全面指南》WebSocket是一种在单个TCP连接上进行全双工通信的协议,这篇文章主要为大家详细介绍了SpringBoot如何集成WebS... 目录前言为什么需要 WebSocketWebSocket 是什么Spring Boot 如何简化 We

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

C#中的Converter的具体应用

《C#中的Converter的具体应用》C#中的Converter提供了一种灵活的类型转换机制,本文详细介绍了Converter的基本概念、使用场景,具有一定的参考价值,感兴趣的可以了解一下... 目录Converter的基本概念1. Converter委托2. 使用场景布尔型转换示例示例1:简单的字符串到

RabbitMQ消费端单线程与多线程案例讲解

《RabbitMQ消费端单线程与多线程案例讲解》文章解析RabbitMQ消费端单线程与多线程处理机制,说明concurrency控制消费者数量,max-concurrency控制最大线程数,prefe... 目录 一、基础概念详细解释:举个例子:✅ 单消费者 + 单线程消费❌ 单消费者 + 多线程消费❌ 多

Spring Boot Actuator应用监控与管理的详细步骤

《SpringBootActuator应用监控与管理的详细步骤》SpringBootActuator是SpringBoot的监控工具,提供健康检查、性能指标、日志管理等核心功能,支持自定义和扩展端... 目录一、 Spring Boot Actuator 概述二、 集成 Spring Boot Actuat

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima