DataLoader 的 collate_fn 解释与示例教程

2024-04-09 04:28

本文主要是介绍DataLoader 的 collate_fn 解释与示例教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 导包
    • 数据
    • Dataloader
    • collate_fn

导包

import torch
from torch.utils.data import Dataset
from typing import Any

数据

class CustomDataset(Dataset):def __init__(self, length) -> None:super().__init__()self.length = lengthdef __getitem__(self, index=None):w1 = 3.14w2 = 4.27w = torch.tensor([w1, w2])feature = torch.rand(2) * 10noise = torch.randn_like(feature) * 0.01label = torch.matmul(w, feature.t())feature += noise# return feature, label.view(1)return feature, labeldef __len__(self):return self.lengthdataset = CustomDataset(4)

Dataloader

dataloader = torch.utils.data.DataLoader(dataset, batch_size=2, )for feature, label in dataloader:print(feature.shape, label.shape)

下述展示了,默认的 Dataload 的处理结果:
通过 torch.stack(feature),构建出 batch 数据;

torch.Size([2, 2]) torch.Size([2])
torch.Size([2, 2]) torch.Size([2])

常量直接拼接;
向量则会在前面添加一个 batch 纬度;

collate_fn

collate_fn:返回值为最终构建的batch数据;在这一步中处理dataset的数据,将其调整成我们期望的数据格式;

如上述默认的输出结果所示:label.shape 为 torch.Size([2]),笔者想通过 collate_fn 修改 label.shapetorch.Size([2, 1]),下述代码实现这个功能:

def collate_fn(item):feature, label = zip(*item)feature = torch.stack(feature)label = torch.stack(label)label = label.view(-1, 1)return feature, labeldataloader = torch.utils.data.DataLoader(dataset, batch_size=2, collate_fn=collate_fn)for feature, label in dataloader:print(feature.shape, label.shape)

输出如下:

torch.Size([2, 2]) torch.Size([2, 1])
torch.Size([2, 2]) torch.Size([2, 1])

collate_fn(item),传入的item的数据为:

[(tensor([[6.9436, 7.2040]]), tensor([[52.6007]])), (tensor([[7.1495, 2.8882]]), tensor([[34.7427]]))]
[(tensor([[1.5311, 9.9278]]), tensor([[47.1995]])), (tensor([[4.9614, 8.6232]]), tensor([[52.3849]]))]

feature, label = zip(*item) 故通过zip(*item)的方式,拆分出 feature 和 label 各自的数据,再借助torch.stack方法将其拼接出 batch 形状的数据。

这篇关于DataLoader 的 collate_fn 解释与示例教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/887174

相关文章

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

2025版mysql8.0.41 winx64 手动安装详细教程

《2025版mysql8.0.41winx64手动安装详细教程》本文指导Windows系统下MySQL安装配置,包含解压、设置环境变量、my.ini配置、初始化密码获取、服务安装与手动启动等步骤,... 目录一、下载安装包二、配置环境变量三、安装配置四、启动 mysql 服务,修改密码一、下载安装包安装地

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

电脑提示d3dx11_43.dll缺失怎么办? DLL文件丢失的多种修复教程

《电脑提示d3dx11_43.dll缺失怎么办?DLL文件丢失的多种修复教程》在使用电脑玩游戏或运行某些图形处理软件时,有时会遇到系统提示“d3dx11_43.dll缺失”的错误,下面我们就来分享超... 在计算机使用过程中,我们可能会遇到一些错误提示,其中之一就是缺失某个dll文件。其中,d3dx11_4

Linux下在线安装启动VNC教程

《Linux下在线安装启动VNC教程》本文指导在CentOS7上在线安装VNC,包含安装、配置密码、启动/停止、清理重启步骤及注意事项,强调需安装VNC桌面以避免黑屏,并解决端口冲突和目录权限问题... 目录描述安装VNC安装 VNC 桌面可能遇到的问题总结描js述linux中的VNC就类似于Window

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em