C++ 圆周率的几种求解方法

2024-04-08 20:36

本文主要是介绍C++ 圆周率的几种求解方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

公众号:编程驿站

圆周率的常见几种求解算法,包括但不仅仅包含特卡洛模拟、割圆法和公式法。本文讲解这几种算法的实现流程。

1. 蒙特卡洛模拟算法

假设有一个半径为1的圆,如图所示。先绘制一个半径为1的圆。则图中阴影部分(1/4圆)的面积就等于π/4

1.png

再绘制出一个正方形,可以看出它的面积是 1 。通过这种方式,就能够获取到正方形面积和阴影部分面积的一个比例。如此可得到正方形和阴影面积的比例关系1:π/4。这是通过数学上提供的计算面积的公式,得到的一个比例。

另外的话呢,我们可以生成很多点。然后把它们随机、均均匀的把平铺到正方形里面去。这时候呢,我们可以认为这些点呢模拟出正方形的面积。另外我们需要计算出有哪些点落在了阴影部分。这种方式也能够获取到正方形和阴影部分面积的比例。这个比例和我们前面通过数学公式所求出的比例呢是一种恒等于的关系,我们利用这种恒等关系,就能够很轻松的获取到这个圆周率。

下面我们看一下这个代码应该如何实现?

第一步利用随机函数产生很多点(横坐标的值x和纵坐标的值y都在0~1之间)随机、均匀散满在正方形内。且统计出散落在阴影部分点的数量。获取正方形内点的数量和阴影部分点的数量的比例。显然,此比例和前面通过公式计算两者面积的比例具有恒等于关系。通过此关系便可计算出圆周率。

#include <iostream>
#include <cstdlib>
#include <ctime>
#include <cmath>
using namespace std;
int main(int argc, char** argv) {//随机种子srand( time(0) );double num=10000000;double circle=0;//random 伪随机数(算法)for(int i=1; i<num; i++) {double x= rand() / double(RAND_MAX);double y=rand() / double(RAND_MAX);if( x*x+y*y <=1 ) {circle++;}}double pi=4*circle /  num;cout<<pi;return 0;
}

2. 割圆法

例如,假设一个半径为1的圆,在圆中有一个内接6边形,如图所示。该内接六边形的弦长y=1,周长d=6*y1,则π的近似值pi=6*y/2=3
可以通过内接 12,24,48……正多边形,求出精度更高的圆周率。

如下图,把圆切割成六边形:根据等边三角形的特征,可知,六边形的边长y=1

2.png

如下图,把圆切割成正12边形。

3.png

因为ABD为直角三角形,可得AB2=AD2-BD2=1-1/4=3/4,所以AB=sqrt(3/4)

又因为BCD也为直角三角形,可得y2=BD2+CB2=1/4+(1-AB)2=1/4+1-2*sqrt(3/4)+3/4=2-sqrt(3)

所以:pi=6*sqrt( 2-sqrt(3) )

#include <bits/stdc++.h>
using namespace std;
int main () {int i,n,s=6;double y=1;cout<<"输入切割次数:"<<endl;cin>>n;for(int i=0; i<n; i++) {printf("第%d次切割,为%d边,PI=%.24f\n",i,s,s/2*sqrt(y));s*=2;//弦长的平方值 y=2-sqrt(4-y); }return 0;
}

3. 公式法

求解圆周率的公式常见的有如下三个:

3.1 公式一

4.png

本质是累乘问题,关键是找到参与累乘数字的之间的规律。这里有两种规律。

  • 通过观察可以发现,后一个分数的分母是前一个分数的分子加1,后一个分数的分子是前一个分数的分母加一。
    8.png

​ 代码实现

#include <bits/stdc++.h>
using namespace std;
int main(int argc, char** argv) {double res=1;int n;cin>>n;double fm=1,fz=2;for(int i=0;i<n;i++){res*=fz/fm;//先存储前一个分数的分母int t=fm;//后一个分数的分母是前一个分数的分子加1fm= fz+1;//后一个分数的分子是前一个分数的分母加1fz=t+1;	}cout<<res*2;return 0;
}
  • 给参与累乘的数字编号,会发现当累乘数字的编号为偶数时,改变分数的分母为下一个奇数,当编号为奇数时,改变分子为下一个偶数。

9.png

​ 代码实现:

#include <bits/stdc++.h>
using namespace std;
int main(int argc, char** argv) {double res=1;int n;cin>>n;double fm=1,fz=2;res*=fz/fm;for(int i=2; i<=n; i++) {if( i%2==0 )fm+=2;else fz+=2;res*=fz/fm;}cout<<res*2;return 0;
}

3.2 公式二

5.png

我们可以把它当成一个累加的问题,但是在累加的时候,又包括有这个累乘的算法,这里我们有两种思考方案。

第一种方式,我们就把相乘当成雷加的一个内嵌的运算式子,就是说用循环嵌套。

#include <bits/stdc++.h>
using namespace std;
int main(int argc, char** argv) {double res=1;int n;cin>>n;for(int i=1;i<=n;i++){double lc=1;double fm=3;for( int j=1;j<=i;j++ ){lc*=j/fm;fm+=2;}res+=lc;}cout<<res*2;return 0;
}

第二种方案,本质上还是一个累加的问题,累加的时候,它要获得一个累乘的效果。一个累乘的值在不停的变化,所以这里我就会声明一个变量。变量用来存储累乘的结果。

#include <bits/stdc++.h>
using namespace std;
int main(int argc, char** argv) {double res=1,lc=1;int n;cin>>n;double fm=3; //分母for(int i=1;i<=n;i++){ //i 分子 lc*=1/fm;res+=lc;fm+=2;}cout<<res*2;return 0;
}

3.3 公式三

7.png

此题也有两种方案,使用二层循环和一层循环。

  • 二层循环。外层循环实现累乘问题,内层循环每次重次计算分母。
#include <bits/stdc++.h>
using namespace std;
int main(int argc, char** argv) {double res=2;int n;cin>>n;for(int i=1;i<=n;i++){double fm=sqrt(2);for( int j=1;j<i;j++){fm=sqrt( 2+fm );}res*=2/fm;}cout<<res;return 0;
}
  • 一层循环。下一次的分母为2减去上一次分母,然后开平方根。
#include <bits/stdc++.h>
using namespace std;
int main(int argc, char** argv) {double res=2;int n;cin>>n;double fm=sqrt(2);for(int i=0;i<n;i++){res*=2/fm;fm=sqrt( 2+fm );}cout<<res;	return 0;
}

这篇关于C++ 圆周率的几种求解方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/886409

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据