基于starganvc2的变声器论文原理解读

2024-04-08 12:04

本文主要是介绍基于starganvc2的变声器论文原理解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据与代码见文末

论文地址:https://arxiv.org/pdf/1907.12279.pdf

1.概述

        什么是变声器,变声器就是将语音特征进行转换,而语音内容不改变

        那么我们如何构建一个变声器呢? 

         首先,我们肯定不能为转换的每一种风格的声音训练一种网络,因此我们可以采用star gan的思想(参见:Star GAN论文解析-CSDN博客),只训练一个对抗生成网络解决所有问题。当然,任务不同,具体的网络结构需要改变

        需要的什么输入呢?输入当然是声音数据和标签编码(one hot类型)。

2.输入数据

        输入声音数据最重要的指标为频率,即每秒钟波峰所发生的数目称之为信号的频率,用单位千赫兹(kHz)表示

        通常来讲,声音信号为一段剧烈震荡的波形,当我们将声音信号不断放大时,就有可能出现一个一个的小线段(极限的思想)。例如0.1ms,此时我们可以对声音进行采样,例如秒0.1ms 4.8次,最终声音频率为4.8kHZ

3.语音特征提取

(1)声音信号的预处理

  • 首先,进行16KHZ重采样,即每秒采用16k次
  • 然后,进行预加重,通过来说,高频信号价值更大,于是我们补偿高频信号,让高频信号权重更大一些       
  • 分帧,类似时间窗口,得到多个特征段 

(2)特征汇总

        基频特征(FO):声音可以分解成不同频率的正弦波,其中频率最低的那个就是基频特征

        频谱包络:语音是一个时序信号,如采样频率为16kHz的音频文件(每秒包含16000个采样点)分后得到了多个子序列,然后对每个子序列进行傅里叶变换操作,就得到了频率-振幅图(也就是描述频率-振幅图变化趋势的)

        Aperiadic参数:基于FO与频谱包络计算得到

(3)MFCC

        流程:连续语音--预加重--加窗分帧--FFT傅里叶变换--MEL滤波器组--对数运算--DCT 

        通常来讲,我们人对低频的声音更敏感,例如从100HZ到200HZ,我们明显能够感觉到声音的变化。而如果声音从4000HZ到4100HZ,我们则感觉不到明显的变化。这可以从斜率的角度理解,其图像类似于一个对数函数。 

         

        FFT(傅里叶变换)之后就把语音转换到频域,MEL滤波器变换后相当于去模拟人类听觉效果。

         

        最后DCT相当于提取每一帧的包络 (这里面特征多) 

4.网络架构

(1)生成器网络结构

        在生成器中,首先进行下采样,然后提取特征,最后上采样,输出结果,类似与ecoder和decoder的过程。

(2)Instance normalization的作用

        在声音数据中,有语音特征和文本特征,对于语音特征我们希望保留其原始内容。

        Instance  normalization是从每一个实例维度出发进行归一化。即首先使用多组卷积进行特征提取,然后对每个特征图进行归一化。经过归一化后,声音特征被平均化,从而消除了特性,而基本的文本特征被保留。

        

(3)AdaIn的目的与效果 

         AdaIn主要用于解码器中,需要我们还原其声音特性。AdaIn有点类似于通道注意力,即使用FC层为每个通过学习一个权重项和偏置项,注意FC层学习的参数是基于标签的one-hot变量学习而来。

        

        (4)判别器

         判别器主要用于判断声音是原始的还是合成的,即判断真假。对于输入的声音数据,不断进行下采样。最后得到真假的预测。真预测接近于1,假预测接近于0.

        标签的处理:首先每个domain进行one hot编码,得到B*d的编码向量,然后将sourse和target进行拼接。拼接后编码为B*C的向量。而GSP层会将输出向量B*C*H*W压成B*C的向量,最后和标签得到的向量内积得到B*C的向量,对最终结果在sum一下得到B*1的向量,然后加入经过FC层的B*1的向量x中,最终得到预测值

数据与代码链接:https://pan.baidu.com/s/1aNlghgo6mtD4iWqNgMOWOQ?pwd=s206 
提取码:s206 

        

        

这篇关于基于starganvc2的变声器论文原理解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/885534

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

C语言自定义类型之联合和枚举解读

《C语言自定义类型之联合和枚举解读》联合体共享内存,大小由最大成员决定,遵循对齐规则;枚举类型列举可能值,提升可读性和类型安全性,两者在C语言中用于优化内存和程序效率... 目录一、联合体1.1 联合体类型的声明1.2 联合体的特点1.2.1 特点11.2.2 特点21.2.3 特点31.3 联合体的大小1

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.