Google Earth Engine中的mean()与median():何时使用哪一种?

2024-04-08 09:44

本文主要是介绍Google Earth Engine中的mean()与median():何时使用哪一种?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言:

在使用Google Earth Engine(GEE)进行数据分析和影像处理时,我们经常会遇到需要对影像进行聚合的情况。而在GEE中,mean()median()是两个常用的聚合函数。但是,什么时候使用mean(),什么时候使用median()呢?这篇文章将为您详细解答。


mean()与median()的定义:

在GEE中,mean()函数通过计算所有匹配波段堆栈中每个像素的所有值的平均值来减少图像集合,而median()函数则是通过计算中位数来减少图像集合。


何时使用mean()?

mean()适用于数据分布相对均匀,且没有太多异常值的情况。例如,当我们处理网格数据(如降水数据)时,由于这类数据通常不会受到异常值(如云或云阴影)的影响,因此使用mean()是合适的。

在降水数据集中,每个像素的值代表该地区的平均降水量。由于降水数据通常比较均匀,且异常值较少,因此使用mean()能够更准确地反映整个区域的平均降水情况。


何时使用median()?

相比之下,median()更适用于存在异常值的数据集。在光学遥感数据中,如云、云阴影等异常值经常会影响数据的准确性。在这种情况下,使用中位数聚合可以更有效地排除这些异常值的影响。

以Landsat 8数据为例,由于图像中可能存在云或云阴影等异常值,使用median()可以减少这些异常值对整体数据的影响,从而得到更准确的聚合结果。这也是为什么在处理光学遥感数据时,我们通常会选择使用中位数聚合的原因。


实验分析:

为了更直观地展示mean()median()的差异,我们进行了以下实验:

  1. 使用Landsat 8数据,分别应用mean()median()进行聚合,并观察结果。实验结果显示,使用中位数聚合的图像受云和云阴影的影响较小,更能真实反映地表情况。
  2. 使用降水数据,分别应用mean()median()进行聚合。在这种情况下,两者差异不大,因为降水数据分布相对均匀,且异常值较少。

结论:

在选择使用mean()还是median()时,我们需要根据数据的特点来决定。如果数据中存在较多的异常值(如云、云阴影等),建议使用median()进行聚合;如果数据分布相对均匀且异常值较少(如降水数据),则可以使用mean()进行聚合。通过合理选择聚合函数,我们可以得到更准确、更有意义的分析结果。

这篇关于Google Earth Engine中的mean()与median():何时使用哪一种?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/885230

相关文章

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

Pandas透视表(Pivot Table)的具体使用

《Pandas透视表(PivotTable)的具体使用》透视表用于在数据分析和处理过程中进行数据重塑和汇总,本文就来介绍一下Pandas透视表(PivotTable)的具体使用,感兴趣的可以了解一下... 目录前言什么是透视表?使用步骤1. 引入必要的库2. 读取数据3. 创建透视表4. 查看透视表总结前言

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

Android使用ImageView.ScaleType实现图片的缩放与裁剪功能

《Android使用ImageView.ScaleType实现图片的缩放与裁剪功能》ImageView是最常用的控件之一,它用于展示各种类型的图片,为了能够根据需求调整图片的显示效果,Android提... 目录什么是 ImageView.ScaleType?FIT_XYFIT_STARTFIT_CENTE

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas使用AdaBoost进行分类的实现

《Pandas使用AdaBoost进行分类的实现》Pandas和AdaBoost分类算法,可以高效地进行数据预处理和分类任务,本文主要介绍了Pandas使用AdaBoost进行分类的实现,具有一定的参... 目录什么是 AdaBoost?使用 AdaBoost 的步骤安装必要的库步骤一:数据准备步骤二:模型

使用Pandas进行均值填充的实现

《使用Pandas进行均值填充的实现》缺失数据(NaN值)是一个常见的问题,我们可以通过多种方法来处理缺失数据,其中一种常用的方法是均值填充,本文主要介绍了使用Pandas进行均值填充的实现,感兴趣的... 目录什么是均值填充?为什么选择均值填充?均值填充的步骤实际代码示例总结在数据分析和处理过程中,缺失数

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http