百度松果菁英班——机器学习实践三:图像直方图统计

2024-04-08 04:36

本文主要是介绍百度松果菁英班——机器学习实践三:图像直方图统计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

飞桨AI Studio星河社区-人工智能学习与实训社区

🥪命令行建文件夹并下载安装相关包

!mkdir /home/aistudio/external-libraries
!pip install beautifulsoup4 -t /home/aistudio/external-libraries

🥪环境设置

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: 
​
import sys 
sys.path.append('/home/aistudio/external-libraries')

🌮灰度直方图补充知识

灰度直方图概括了图像的灰度级信息,简单的来说就是每个灰度级图像中的像素个数以及占有率,创建直方图无外乎两个步骤,统计直方图数据,再用绘图库绘制直方图。

统计直方图数据 首先要稍微理解一些与函数相关的术语,方便理解其在python3库中的应用和处理 BINS: 在上面的直方图当中,如果像素值是0到255,则需要256个值来显示直 方图。但是,如果不需要知道每个像素值的像素数目,只想知道两个像素值之间的像素点数目怎么办?例如,想知道像素值在0到15之间的像素点数目,然后是16到31。。。240到255。可以将256个值分成16份,每份计算综合。每个分成的小组就是一个BIN(箱)。在opencv中使用histSize表示BINS。 DIMS: 数据的参数数目。当前例子当中,对收集到的数据只考虑灰度值,所以该值为1。 RANGE: 灰度值范围,通常是[0,256],也就是灰度所有的取值范围。 统计直方图同样有两种方法,使用opencv统计直方图,函数如下:

cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate]])

🥪各种直方图的绘制

🥗1numpy调用hist绘制

import cv2
import numpy as np
from matplotlib import pyplot as plt
​
img = cv2.imread('data/nezha.jpeg',1)
# img_np = np.array(img) 
plt.hist(img.reshape([-1]),256,[0,256]);
plt.show()
  • 通过cv2.imread()函数读取了一张图像

  • 使用Matplotlib库的hist()函数绘制了该图像的灰度直方图

  • 在直方图中,横轴表示像素的灰度级别(从0到255),纵轴表示对应灰度级别的像素数量

  • 通过观察直方图,可以了解图像的亮度分布情况,以及是否存在过曝或欠曝的情况

  • plt.hist()函数的参数中,img.reshape([-1])将图像数组转换成一维数组,256表示直方图的箱数,[0,256]表示灰度级别的范围

🥗2cv2调用calcHist绘制

该代码与上个代码的区别只是绘制调用的函数不同

import cv2
# import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('data/nezha.jpeg',0)
histr = cv2.calcHist([img],[0],None,[256],[0,256]) #hist是一个shape为(256,1)的数组,表示0-255每个像素值对应的像素个数,下标即为相应的像素值
plt.plot(histr,color = 'b')
plt.xlim([0,256])
plt.show()

cv2.calcHist([images], [channels], mask, histSize, ranges[, hist[, accumulate ]])

  • imaes:输入的图像

  • channels:选择图像的通道

  • mask:掩膜,是一个大小和image一样的np数组,其中把需要处理的部分指定为1,不需要处理的部分指定为0,一般设置为None,表示处理整幅图像

  • histSize:使用多少个bin(柱子),一般为256

  • ranges:像素值的范围,一般为[0,255]表示0~255

🥗3cv2调用calcHist分别绘制红绿蓝三通道

import cv2
from matplotlib import pyplot as plt
img = cv2.imread('data/nezha.jpeg',1) 
color = ('b','g','r')
for i,col in enumerate(color):histr = cv2.calcHist([img],[i],None,[256],[0,256])#hist是一个shape为(256,1)的数组,表示0-255每个像素值对应的像素个数,下标即为相应的像素值plt.plot(histr,color = col)plt.xlim([0,256])
plt.show()

🥗4手动编写绘制(不调包)

import sys
import numpy as np
import cv2
import matplotlib.pyplot as plt
​
def main():img=cv2.imread('data/nezha.jpeg',0)#得到计算灰度直方图的值n = np.array(img)xy=xygray(img)   
​#画出灰度直方图x_range=range(256)plt.plot(x_range,xy,"r",linewidth=2,c='black')#设置坐标轴的范围y_maxValue=np.max(xy)plt.axis([0,255,0,y_maxValue])#设置坐标轴的标签plt.xlabel('gray Level')plt.ylabel("number of pixels")plt.show()
​
def xygray(img):#得到高和宽rows,cols=img.shapeprint(img.shape)#存储灰度直方图xy=np.zeros([256],np.uint64)for r in range(rows):for c in range(cols):xy[img[r][c]] += 1#返回一维ndarryprint(xy.sum())return xy
​
main()

⭐点赞收藏不迷路~

这篇关于百度松果菁英班——机器学习实践三:图像直方图统计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/884578

相关文章

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

破茧 JDBC:MyBatis 在 Spring Boot 中的轻量实践指南

《破茧JDBC:MyBatis在SpringBoot中的轻量实践指南》MyBatis是持久层框架,简化JDBC开发,通过接口+XML/注解实现数据访问,动态代理生成实现类,支持增删改查及参数... 目录一、什么是 MyBATis二、 MyBatis 入门2.1、创建项目2.2、配置数据库连接字符串2.3、入

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自