【编译原理】手工打造语法分析器

2024-04-08 01:52

本文主要是介绍【编译原理】手工打造语法分析器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

重点:

  • 语法分析的原理
  • 递归下降算法(Recursive Descent Parsing)
  • 上下文无关文法(Context-free Grammar,CFG)

关键点:

  • 左递归问题
  • 深度遍历求值 - 后续遍历

上一篇「词法分析器」将字符串拆分为了一个一个的 token。
本篇我们将 token 变成语法树。

一、递归下降算法

还是这个例子 int age = 45
我们给出这个语法的规则:

intDeclaration : Int Identifier ('=' additiveExpression)?;

如果翻译为程序的话,伪代码如下

// 伪代码
MatchIntDeclare(){MatchToken(Int);        // 匹配 Int 关键字MatchIdentifier();       // 匹配标识符MatchToken(equal);       // 匹配等号MatchExpression();       // 匹配表达式
}

输出的 AST 类似于:

Programm CalculatorIntDeclaration ageAssignmentExp =IntLiteral 45

上面的过程,称为「递归下降算法」。
从顶部开始不断向下生成节点,其中还会有递归调用的部分。

二、上下文无关文法

上面的例子比较简单,还可以用正则表达式文法来表示。
但如果是个算数表达式呢?正则文法就很难表示了。

  • 2+3*5
  • 2*3+5
  • 2*3

这时我们可以用递归的规则来表示

additiveExpression:   multiplicativeExpression|   additiveExpression Plus multiplicativeExpression;multiplicativeExpression:   IntLiteral|   multiplicativeExpression Star IntLiteral;

生成的 AST 为:
image.png

如果要计算表达式的值,只需要对根节点求值就可以了。
这个就叫做**「上下文无关文法」**。

但你把上述规则翻译为代码逻辑时,会发现一个问题,无限递归
我们先用个最简单的示例:

	additiveExpression:   IntLiteral|   additiveExpression Plus IntLiteral;

比如输入 2+3

  • 先判断其是不是 IntLiteral,发现不是
  • 然后匹配 additiveExpression Plus IntLiteral,此时还没有消耗任何的 token
  • 先进入的是 additiveExpression,此时要处理的表达式还是 2+3
  • 又回到开始,无限循环

这里要注意的一个问题:
并不是觉得 2+3 符合 additiveExpression Plus IntLiteral 就能直接按照 + 拆分为两部分,然后两部分分别去匹配。
这里是顺序匹配的,直到匹配到该语法规则的结束符为止。
additiveExpression Plus IntLiteraladditiveExpression 的部分,也是在处理完整的 token 的(2+3)。

三、左递归解决方案

改为右递归

如何处理这个左递归问题呢?
我们可以把表达式换个位置:

	additiveExpression:   IntLiteral|   IntLiteral Plus additiveExpression;

先匹配 IntLiteral 这样就能消耗掉一个 token,就不会无限循环了。
比如还是 2+3

  • 2+3 不是 IntLiteral,跳到下面
  • 2+3 的第一个字符是 2IntLiteral 消耗掉,并结束 IntLiteral 匹配
  • 然后 +Plus 消耗掉
  • 最后 3 进入 additiveExpression,匹配为第一条规则 IntLiteral

这样就结束了,没有无限循环。
改写成算法是:

private SimpleASTNode additive(TokenReader tokens) throws Exception {SimpleASTNode child1 = IntLiteral();  // 计算第一个子节点SimpleASTNode node = child1;  // 如果没有第二个子节点,就返回这个Token token = tokens.peek();if (child1 != null && token != null) {if (token.getType() == TokenType.Plus) {token = tokens.read();SimpleASTNode child2 = additive(); // 递归地解析第二个节点if (child2 != null) {node = new SimpleASTNode(ASTNodeType.AdditiveExp, token.getText());node.addChild(child1);node.addChild(child2);} else {throw new Exception("invalid additive expression, expecting the right part.");}}}return node;
}

但也有问题:
比如 2+3+4,你会发现它的计算顺序变为了 2+(3+4) 后面 3+4 作为一个 additiveExpression 先被计算,然后才会和前面的 2 相加。改变了计算顺序。
image.png

消除左递归

上面右递归解决了无限递归的问题,但是又有了结合优先级的问题。
那么我们再改写一下左递归:

additiveExpression:   IntLiteral additiveExpression';additiveExpression':		'+' IntLiteral additiveExpression'| 	ε;

文法中,ε(读作 epsilon)是空集的意思。
语法树 AST 就变成了下图左边的样子,虽然没有无限递归,但是按照前面思路,使用递归下降算法,结合性还是不对。
我们期望的应该是右边的 AST 树样子。那么怎么才能变成右边的样子呢?
image.png

这里我们插入一个知识点:
前面语法规则的表示方式成为:「巴科斯范式」,简称 BNF
我们把下面用正则表达式简化表达的方式,称为「扩展巴科斯范式 (EBNF)」
add -> mul (+ mul)*

那么我们把上面的表达式改写成 EBNF 形式,变为:

additiveExpression -> IntLiteral ('+' IntLiteral)*

这里写法的变化,就能让我们的算法逻辑产生巨大的变化。

重点:
前面左递归也好、右递归也好,变来变去都是递归调用,导致无限循环、结合性的问题。如果我们干掉递归,用循环来代替,就能按照我们期待的方式来执行了。
这里的区别是:前面递归计算过程是后序,把最后访问到的节点先计算,然后再一步步的返回;而循环迭代是前序,先计算再往后访问。

我们再写出计算逻辑:

private SimpleASTNode additive(TokenReader tokens) throws Exception {SimpleASTNode child1 = IntLiteral(tokens);  // 应用 add 规则SimpleASTNode node = child1;if (child1 != null) {while (true) {                              // 循环应用 add'Token token = tokens.peek();if (token != null && (token.getType() == TokenType.Plus)) {token = tokens.read();              // 读出加号SimpleASTNode child2 = IntLiteral(tokens);  // 计算下级节点node = new SimpleASTNode(ASTNodeType.Additive, token.getText());node.addChild(child1);              // 注意,新节点在顶层,保证正确的结合性node.addChild(child2);child1 = node;} else {break;}}}return node;
}

消除了递归,只有循环迭代。你可以和上面递归的代码对比下。

再提一个概念:「尾递归」
尾递归就是函数的最后一句是递归的调用自身,可以理解为先序。而这种尾递归通常都可以转化为一个循环语句。

四、执行代码

前面我们已经把一个语句转换为了一个 AST 树,接下来我们遍历这个语法树,就能实现计算求值了。
2+3+4 为例,简化后的语法树长这样:
image.png

遍历的伪代码如下:

evaluate(node) {if node.type == TYPE.ADD:left_res = evaluate(node.getChild(0))right_res = evaluate(node.getChild(1))return left_res + right_reselse if node.type == TYPE.INT:return node.val
}

五、小结

✌️至此,我们实现了一个计算器。

  • 可以实现词法分析:对输入的文本拆分为一个一个的 token
  • 生成语法树:将 token 变为一个 AST 树
  • 计算求值:遍历 AST 树,就能得到最终的计算结果

后面你可以在此基础上进行扩展,增加更多的运算符。以及扩充为一个脚本语言解释器,添加变量赋值、计算等等操作咯。

这篇关于【编译原理】手工打造语法分析器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/884262

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

Python利用GeoPandas打造一个交互式中国地图选择器

《Python利用GeoPandas打造一个交互式中国地图选择器》在数据分析和可视化领域,地图是展示地理信息的强大工具,被将使用Python、wxPython和GeoPandas构建的交互式中国地图行... 目录技术栈概览代码结构分析1. __init__ 方法:初始化与状态管理2. init_ui 方法:

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.