【提示学习论文】ProGrad:Prompt-aligned Gradient for Prompt Tuning论文原理

2024-04-07 23:52

本文主要是介绍【提示学习论文】ProGrad:Prompt-aligned Gradient for Prompt Tuning论文原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Prompt-aligned Gradient for Prompt Tuning(CORR2022 / ICCV2023)

1 Motivation

在这里插入图片描述

在这里插入图片描述

  • 经过CoOp微调过的prompt会导致模型更关注背景而不是前景对象,对于分类任务不利

2 Contribution

在这里插入图片描述
提出了一种基于prompt对齐的梯度的引导方法(ProGrad),来应对prompt学习中添加的不正确偏置的问题。在tuning的过程中进行一种正则化,来确保这一步的tuning不和原本的知识(zero-shot CLIP)产生冲突。

  • 一般方向(general direction):zero-shot CLIP
  • 域特殊方向(domain-specific direction):CoOp计算得出
    • 垂直向量 G ⊥ G_⊥ G
    • 平行向量 G ∥ G_∥ G

3 具体方法

由CoOp进行学习的域特殊方向,加强其在当前数据下的精度的优化方向,但是这可能导致过拟合。用一个一般普通的prompt和zero-shot CLIP的logits计算一个KL散度,这个KL散度回传的梯度作为一般方向。

3.1 交叉熵损失

在这里插入图片描述
L c e L_{ce} Lce:模型预测 p ( t i ∣ x ) p(t_i|x) p(tix)真实值 y y y的交叉熵损失

3.2 KL散度

在这里插入图片描述

L k l L_{kl} Lkl:模型预测 p ( t i ∣ x ) p(t_i|x) p(tix)zero-shot CLIP预测 p z s ( w i ∣ x ) p_{zs}(w_i|x) pzs(wix)的KL散度

3.3 梯度

  • L c e L_{ce} Lce的梯度表示为 G d = ∇ v L c e ( v ) G_d =∇_vL_{ce}(v) Gd=vLce(v)
  • L k l L_{kl} Lkl的梯度表示为 G g = ∇ v L k l ( v ) G_g =∇_vL_{kl}(v) Gg=vLkl(v)

在这里插入图片描述

G d G_d Gd G g G_g Gg的关系:

  • 夹角小于90°:说明下游知识优化方向与一般知识不冲突,此时安全地更新梯度 G p r o g r a d G_{prograd} Gprograd作为 G d G_d Gd
  • 夹角大于90°:说明下游知识优化方向与一般知识冲突,此时,将 G d G_d Gd投影 G g G_g Gg正交方向,避免增加 L k l L_{kl} Lkl

3.4 ProGrad策略公式

在这里插入图片描述
在本文CoOp中,我们没有使用 G d G_d Gd来更新上下文向量,而是使用 G p r o g r a d G_{prograd} Gprograd来优化,可以避免过拟合:

  • λ=1:将 G d G_d Gd投影到 G g G_g Gg的正交方向
  • λ=0:使prograd退化为CoOp

3.5 总体流程

在这里插入图片描述

  • 可学习上下文和类别输入文本编码器,图像输入图像编码器
  • 将文本特征与图像特征计算相似概率,得到 p p p
  • p p p y y y计算 C E L o s s CE Loss CELoss,得到 G d G_d Gd
  • p p p p z s p_{zs} pzs计算 K L L o s s KL Loss KLLoss,得到 G g G_g Gg
  • G d G_d Gd G g G_g Gg反传回去,使用 G p r o g r a d G_{prograd} Gprograd更新可学习参数

这篇关于【提示学习论文】ProGrad:Prompt-aligned Gradient for Prompt Tuning论文原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/884021

相关文章

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

Nacos注册中心和配置中心的底层原理全面解读

《Nacos注册中心和配置中心的底层原理全面解读》:本文主要介绍Nacos注册中心和配置中心的底层原理的全面解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录临时实例和永久实例为什么 Nacos 要将服务实例分为临时实例和永久实例?1.x 版本和2.x版本的区别

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

apache的commons-pool2原理与使用实践记录

《apache的commons-pool2原理与使用实践记录》ApacheCommonsPool2是一个高效的对象池化框架,通过复用昂贵资源(如数据库连接、线程、网络连接)优化系统性能,这篇文章主... 目录一、核心原理与组件二、使用步骤详解(以数据库连接池为例)三、高级配置与优化四、典型应用场景五、注意事

电脑系统Hosts文件原理和应用分享

《电脑系统Hosts文件原理和应用分享》Hosts是一个没有扩展名的系统文件,当用户在浏览器中输入一个需要登录的网址时,系统会首先自动从Hosts文件中寻找对应的IP地址,一旦找到,系统会立即打开对应... Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应

电脑提示Winmm.dll缺失怎么办? Winmm.dll文件丢失的多种修复技巧

《电脑提示Winmm.dll缺失怎么办?Winmm.dll文件丢失的多种修复技巧》有时电脑会出现无法启动程序,因为计算机中丢失winmm.dll的情况,其实,winmm.dll丢失是一个比较常见的问... 在大部分情况下出现我们运行或安装软件,游戏出现提示丢失某些DLL文件或OCX文件的原因可能是原始安装包

Dubbo之SPI机制的实现原理和优势分析

《Dubbo之SPI机制的实现原理和优势分析》:本文主要介绍Dubbo之SPI机制的实现原理和优势,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Dubbo中SPI机制的实现原理和优势JDK 中的 SPI 机制解析Dubbo 中的 SPI 机制解析总结Dubbo中

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示