Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之三 简单动态聚光灯效果

本文主要是介绍Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之三 简单动态聚光灯效果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之三 简单动态聚光灯效果

目录

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之三 简单动态聚光灯效果

一、简单介绍

二、简单动态聚光灯效果实现原理

三、简单动态聚光灯效果案例实现简单步骤

四、注意事项


一、简单介绍

Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。Python是一种解释型脚本语言,可以应用于以下领域: Web 和 Internet开发、科学计算和统计、人工智能、教育、桌面界面开发、软件开发、后端开发、网络爬虫。

这里使用 Python  基于 OpenCV 进行视觉图像处理,......

二、简单动态聚光灯效果实现原理

简单动态聚光灯效果,这里视频中出现了彩色的光圈,随着视频的播放在图像的不同位置游走。

原理和实现方法:

  1. 初始化

    • 读取输入视频文件和获取视频的帧率、尺寸。
    • 创建输出视频文件。
  2. 生成聚光灯

    • 在程序开始时,随机生成多盏聚光灯。每盏聚光灯由位置、颜色、移动角度和速度组成。
  3. 逐帧处理

    • 读取输入视频的每一帧。
    • 在每一帧上应用所有聚光灯的效果,并将其叠加到原始帧上。
    • 更新每一盏聚光灯的位置,如果聚光灯到达视频边缘,则随机选择新的移动角度和速度。
  4. 写入输出

    • 将处理后的帧写入输出视频文件。

在这两个函数中,涉及了一些 OpenCV 和 NumPy 的函数,下面是它们的说明:

OpenCV 函数:

  1. cv2.resize()

    • 用于调整图像的大小。
    • 参数:
      • src:输入图像。
      • dsize:输出图像的尺寸。
      • interpolation:插值方法,用于调整图像尺寸。
    • 返回值:调整大小后的图像。
  2. cv2.split()

    • 用于将多通道图像拆分为单通道图像。
    • 参数:输入的多通道图像。
    • 返回值:单通道图像组成的列表。
  3. cv2.merge()

    • 用于将多个单通道图像合并成一个多通道图像。
    • 参数:单通道图像组成的列表。
    • 返回值:合并后的多通道图像。
  4. cv2.VideoWriter()

    • 创建一个视频写入对象,用于将帧写入视频文件。
    • 参数:
      • filename:输出视频文件名。
      • fourcc:视频编码器。
      • fps:帧率。
      • frameSize:视频帧的大小。
    • 返回值:视频写入对象。

NumPy 函数:

  1. np.ones_like()

    • 生成一个与输入数组形状相同的全 1 数组。
    • 参数:输入数组。
    • 返回值:形状相同且元素全为 1 的数组。
  2. np.zeros_like()

    • 生成一个与输入数组形状相同的全 0 数组。
    • 参数:输入数组。
    • 返回值:形状相同且元素全为 0 的数组。
  3. np.round()

    • 对数组中的元素进行四舍五入。
    • 参数:输入数组。
    • 返回值:四舍五入后的数组。
  4. np.power()

    • 计算数组的幂。
    • 参数:输入数组和幂指数。
    • 返回值:幂计算后的数组。

这些函数在实现聚光灯效果的过程中起着重要的作用,通过它们可以对图像进行大小调整、颜色分离、视频写入等操作。

三、简单动态聚光灯效果案例实现简单步骤

1、编写代码,先看看一个聚光灯移动的效果

2、运行效果

3、具体代码

"""
单个聚光等在视频中移动的效果
"""import cv2
import numpy as npdef apply_spotlight(frame, spotlight_pos):"""在视频帧上应用动态聚光灯效果:param frame: :param spotlight_pos: :return: """# 创建一个黑色图像,与原始视频帧相同大小spotlight_mask = np.zeros_like(frame)# 在黑色图像上绘制一个白色的椭圆,模拟聚光灯光圈cv2.ellipse(spotlight_mask, spotlight_pos, (100, 100), 0, 0, 360, (255, 255, 255), -1)# 将光圈图像与原始视频帧进行叠加result_frame = cv2.addWeighted(frame, 1, spotlight_mask, 0.5, 0)return result_framedef main():# 打开视频文件cap = cv2.VideoCapture('Videos/CatRun.mp4')# 获取视频帧率和尺寸fps = cap.get(cv2.CAP_PROP_FPS)width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 创建 VideoWriter 对象fourcc = cv2.VideoWriter_fourcc(*'mp4v')out = cv2.VideoWriter('output_video.mp4', fourcc, fps, (width, height))# 初始化聚光灯位置spotlight_pos = (int(width / 2), int(height / 2))# 逐帧处理视频while cap.isOpened():ret, frame = cap.read()if not ret:break# 应用动态聚光灯效果frame_with_spotlight = apply_spotlight(frame, spotlight_pos)# 写入输出视频out.write(frame_with_spotlight)# 更新聚光灯位置(示例中简单地沿着视频宽度方向移动)spotlight_pos = ((spotlight_pos[0] + 5) % width, spotlight_pos[1])# 释放资源cap.release()out.release()cv2.destroyAllWindows()if __name__ == "__main__":main()

4、编写代码,实现多个聚光灯动态移动效果

5、运行效果

6、具体代码

"""
简单动态聚光灯效果1、apply_spotlights(frame, spotlights):这个函数用于在视频帧上应用多盏聚光灯效果。参数:frame:输入的视频帧,是一个 numpy 数组。spotlights:包含多盏聚光灯信息的列表。每个聚光灯由位置、颜色、移动角度和速度组成。返回值:处理后的视频帧,应用了聚光灯效果。2、main():这个函数是程序的主函数,用于读取输入视频并逐帧处理,添加聚光灯效果后写入输出视频。主要步骤:读取输入视频文件。初始化输出视频文件。创建并初始化多盏聚光灯的信息。逐帧读取输入视频,应用聚光灯效果并写入输出视频。更新每盏聚光灯的位置。函数调用:调用了apply_spotlights()函数来添加聚光灯效果。
"""import cv2
import numpy as np
import random
import mathdef apply_spotlights(frame, spotlights):"""在视频帧上应用多盏聚光灯效果:param frame::param spotlights::return:"""result_frame = frame.copy()# 在每一盏聚光灯上叠加光斑for spotlight in spotlights:spotlight_pos, spotlight_color, _, _ = spotlight  # 保留移动方向和速度,但在此不使用spotlight_mask = np.zeros_like(frame)cv2.ellipse(spotlight_mask, spotlight_pos, (150, 150), 0, 0, 360, spotlight_color, -1)result_frame = cv2.addWeighted(result_frame, 1, spotlight_mask, 0.5, 0)return result_framedef main():video_path = "Videos/CatRun.mp4"output_path = "Videos/VideoSpotLightEffect.mp4"# 打开视频文件cap = cv2.VideoCapture(video_path)# 获取视频帧率和尺寸fps = cap.get(cv2.CAP_PROP_FPS)width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 创建 VideoWriter 对象fourcc = cv2.VideoWriter_fourcc(*'mp4v')out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))# 初始化聚光灯列表,每一盏聚光灯由位置、颜色、移动角度和速度组成spotlights = []for _ in range(5):  # 创建5盏聚光灯spotlight_pos = (random.randint(0, width - 1), random.randint(0, height - 1))spotlight_color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))# 随机选择一个移动角度和速度angle = random.uniform(0, 2 * math.pi)speed = random.randint(3, 10)spotlights.append((spotlight_pos, spotlight_color, angle, speed))# 逐帧处理视频while cap.isOpened():ret, frame = cap.read()if not ret:break# 应用多盏聚光灯效果frame_with_spotlights = apply_spotlights(frame, spotlights)# 写入输出视频out.write(frame_with_spotlights)# 更新每一盏聚光灯的位置for i in range(len(spotlights)):# 获取当前聚光灯的位置、颜色、移动角度和速度spotlight_pos, spotlight_color, angle, speed = spotlights[i]# 根据移动角度和速度更新聚光灯位置dx = int(speed * math.cos(angle))dy = int(speed * math.sin(angle))new_x = min(max(0, spotlight_pos[0] + dx), width - 1)new_y = min(max(0, spotlight_pos[1] + dy), height - 1)# 如果聚光灯到达视频边缘,随机选择一个新的移动角度和速度if new_x in [0, width - 1] or new_y in [0, height - 1]:angle = random.uniform(0, 2 * math.pi)speed = random.randint(3, 10)# 更新聚光灯列表中的聚光灯信息spotlights[i] = ((new_x, new_y), spotlight_color, angle, speed)# 释放资源cap.release()out.release()cv2.destroyAllWindows()if __name__ == "__main__":main()

四、注意事项

  1. 聚光灯移动

    • 确保聚光灯移动的速度和角度自然,避免抖动和突然变化,使得效果更真实。
  2. 边界处理

    • 当聚光灯移动到视频边缘时,要确保正确地处理边界情况,防止越界。
  3. 效率优化

    • 考虑到处理视频的效率,尽量使用向量化操作和适当的数据结构,减少循环和不必要的计算。
  4. 颜色随机性

    • 聚光灯的颜色应该是随机生成的,以增加效果的多样性和真实感。
  5. 参数调整

    • 可以调整聚光灯的数量、移动速度范围、移动角度范围等参数,以获得更满意的效果。

这篇关于Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之三 简单动态聚光灯效果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/883020

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方