Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之三 简单动态聚光灯效果

本文主要是介绍Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之三 简单动态聚光灯效果,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之三 简单动态聚光灯效果

目录

Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之三 简单动态聚光灯效果

一、简单介绍

二、简单动态聚光灯效果实现原理

三、简单动态聚光灯效果案例实现简单步骤

四、注意事项


一、简单介绍

Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。Python是一种解释型脚本语言,可以应用于以下领域: Web 和 Internet开发、科学计算和统计、人工智能、教育、桌面界面开发、软件开发、后端开发、网络爬虫。

这里使用 Python  基于 OpenCV 进行视觉图像处理,......

二、简单动态聚光灯效果实现原理

简单动态聚光灯效果,这里视频中出现了彩色的光圈,随着视频的播放在图像的不同位置游走。

原理和实现方法:

  1. 初始化

    • 读取输入视频文件和获取视频的帧率、尺寸。
    • 创建输出视频文件。
  2. 生成聚光灯

    • 在程序开始时,随机生成多盏聚光灯。每盏聚光灯由位置、颜色、移动角度和速度组成。
  3. 逐帧处理

    • 读取输入视频的每一帧。
    • 在每一帧上应用所有聚光灯的效果,并将其叠加到原始帧上。
    • 更新每一盏聚光灯的位置,如果聚光灯到达视频边缘,则随机选择新的移动角度和速度。
  4. 写入输出

    • 将处理后的帧写入输出视频文件。

在这两个函数中,涉及了一些 OpenCV 和 NumPy 的函数,下面是它们的说明:

OpenCV 函数:

  1. cv2.resize()

    • 用于调整图像的大小。
    • 参数:
      • src:输入图像。
      • dsize:输出图像的尺寸。
      • interpolation:插值方法,用于调整图像尺寸。
    • 返回值:调整大小后的图像。
  2. cv2.split()

    • 用于将多通道图像拆分为单通道图像。
    • 参数:输入的多通道图像。
    • 返回值:单通道图像组成的列表。
  3. cv2.merge()

    • 用于将多个单通道图像合并成一个多通道图像。
    • 参数:单通道图像组成的列表。
    • 返回值:合并后的多通道图像。
  4. cv2.VideoWriter()

    • 创建一个视频写入对象,用于将帧写入视频文件。
    • 参数:
      • filename:输出视频文件名。
      • fourcc:视频编码器。
      • fps:帧率。
      • frameSize:视频帧的大小。
    • 返回值:视频写入对象。

NumPy 函数:

  1. np.ones_like()

    • 生成一个与输入数组形状相同的全 1 数组。
    • 参数:输入数组。
    • 返回值:形状相同且元素全为 1 的数组。
  2. np.zeros_like()

    • 生成一个与输入数组形状相同的全 0 数组。
    • 参数:输入数组。
    • 返回值:形状相同且元素全为 0 的数组。
  3. np.round()

    • 对数组中的元素进行四舍五入。
    • 参数:输入数组。
    • 返回值:四舍五入后的数组。
  4. np.power()

    • 计算数组的幂。
    • 参数:输入数组和幂指数。
    • 返回值:幂计算后的数组。

这些函数在实现聚光灯效果的过程中起着重要的作用,通过它们可以对图像进行大小调整、颜色分离、视频写入等操作。

三、简单动态聚光灯效果案例实现简单步骤

1、编写代码,先看看一个聚光灯移动的效果

2、运行效果

3、具体代码

"""
单个聚光等在视频中移动的效果
"""import cv2
import numpy as npdef apply_spotlight(frame, spotlight_pos):"""在视频帧上应用动态聚光灯效果:param frame: :param spotlight_pos: :return: """# 创建一个黑色图像,与原始视频帧相同大小spotlight_mask = np.zeros_like(frame)# 在黑色图像上绘制一个白色的椭圆,模拟聚光灯光圈cv2.ellipse(spotlight_mask, spotlight_pos, (100, 100), 0, 0, 360, (255, 255, 255), -1)# 将光圈图像与原始视频帧进行叠加result_frame = cv2.addWeighted(frame, 1, spotlight_mask, 0.5, 0)return result_framedef main():# 打开视频文件cap = cv2.VideoCapture('Videos/CatRun.mp4')# 获取视频帧率和尺寸fps = cap.get(cv2.CAP_PROP_FPS)width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 创建 VideoWriter 对象fourcc = cv2.VideoWriter_fourcc(*'mp4v')out = cv2.VideoWriter('output_video.mp4', fourcc, fps, (width, height))# 初始化聚光灯位置spotlight_pos = (int(width / 2), int(height / 2))# 逐帧处理视频while cap.isOpened():ret, frame = cap.read()if not ret:break# 应用动态聚光灯效果frame_with_spotlight = apply_spotlight(frame, spotlight_pos)# 写入输出视频out.write(frame_with_spotlight)# 更新聚光灯位置(示例中简单地沿着视频宽度方向移动)spotlight_pos = ((spotlight_pos[0] + 5) % width, spotlight_pos[1])# 释放资源cap.release()out.release()cv2.destroyAllWindows()if __name__ == "__main__":main()

4、编写代码,实现多个聚光灯动态移动效果

5、运行效果

6、具体代码

"""
简单动态聚光灯效果1、apply_spotlights(frame, spotlights):这个函数用于在视频帧上应用多盏聚光灯效果。参数:frame:输入的视频帧,是一个 numpy 数组。spotlights:包含多盏聚光灯信息的列表。每个聚光灯由位置、颜色、移动角度和速度组成。返回值:处理后的视频帧,应用了聚光灯效果。2、main():这个函数是程序的主函数,用于读取输入视频并逐帧处理,添加聚光灯效果后写入输出视频。主要步骤:读取输入视频文件。初始化输出视频文件。创建并初始化多盏聚光灯的信息。逐帧读取输入视频,应用聚光灯效果并写入输出视频。更新每盏聚光灯的位置。函数调用:调用了apply_spotlights()函数来添加聚光灯效果。
"""import cv2
import numpy as np
import random
import mathdef apply_spotlights(frame, spotlights):"""在视频帧上应用多盏聚光灯效果:param frame::param spotlights::return:"""result_frame = frame.copy()# 在每一盏聚光灯上叠加光斑for spotlight in spotlights:spotlight_pos, spotlight_color, _, _ = spotlight  # 保留移动方向和速度,但在此不使用spotlight_mask = np.zeros_like(frame)cv2.ellipse(spotlight_mask, spotlight_pos, (150, 150), 0, 0, 360, spotlight_color, -1)result_frame = cv2.addWeighted(result_frame, 1, spotlight_mask, 0.5, 0)return result_framedef main():video_path = "Videos/CatRun.mp4"output_path = "Videos/VideoSpotLightEffect.mp4"# 打开视频文件cap = cv2.VideoCapture(video_path)# 获取视频帧率和尺寸fps = cap.get(cv2.CAP_PROP_FPS)width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))# 创建 VideoWriter 对象fourcc = cv2.VideoWriter_fourcc(*'mp4v')out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))# 初始化聚光灯列表,每一盏聚光灯由位置、颜色、移动角度和速度组成spotlights = []for _ in range(5):  # 创建5盏聚光灯spotlight_pos = (random.randint(0, width - 1), random.randint(0, height - 1))spotlight_color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))# 随机选择一个移动角度和速度angle = random.uniform(0, 2 * math.pi)speed = random.randint(3, 10)spotlights.append((spotlight_pos, spotlight_color, angle, speed))# 逐帧处理视频while cap.isOpened():ret, frame = cap.read()if not ret:break# 应用多盏聚光灯效果frame_with_spotlights = apply_spotlights(frame, spotlights)# 写入输出视频out.write(frame_with_spotlights)# 更新每一盏聚光灯的位置for i in range(len(spotlights)):# 获取当前聚光灯的位置、颜色、移动角度和速度spotlight_pos, spotlight_color, angle, speed = spotlights[i]# 根据移动角度和速度更新聚光灯位置dx = int(speed * math.cos(angle))dy = int(speed * math.sin(angle))new_x = min(max(0, spotlight_pos[0] + dx), width - 1)new_y = min(max(0, spotlight_pos[1] + dy), height - 1)# 如果聚光灯到达视频边缘,随机选择一个新的移动角度和速度if new_x in [0, width - 1] or new_y in [0, height - 1]:angle = random.uniform(0, 2 * math.pi)speed = random.randint(3, 10)# 更新聚光灯列表中的聚光灯信息spotlights[i] = ((new_x, new_y), spotlight_color, angle, speed)# 释放资源cap.release()out.release()cv2.destroyAllWindows()if __name__ == "__main__":main()

四、注意事项

  1. 聚光灯移动

    • 确保聚光灯移动的速度和角度自然,避免抖动和突然变化,使得效果更真实。
  2. 边界处理

    • 当聚光灯移动到视频边缘时,要确保正确地处理边界情况,防止越界。
  3. 效率优化

    • 考虑到处理视频的效率,尽量使用向量化操作和适当的数据结构,减少循环和不必要的计算。
  4. 颜色随机性

    • 聚光灯的颜色应该是随机生成的,以增加效果的多样性和真实感。
  5. 参数调整

    • 可以调整聚光灯的数量、移动速度范围、移动角度范围等参数,以获得更满意的效果。

这篇关于Python 基于 OpenCV 视觉图像处理实战 之 OpenCV 简单视频处理实战案例 之三 简单动态聚光灯效果的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/883020

相关文章

Python中edge-tts实现便捷语音合成

《Python中edge-tts实现便捷语音合成》edge-tts是一个功能强大的Python库,支持多种语言和声音选项,本文主要介绍了Python中edge-tts实现便捷语音合成,具有一定的参考价... 目录安装与环境设置文本转语音查找音色更改语音参数生成音频与字幕总结edge-tts 是一个功能强大的

使用Python和PaddleOCR实现图文识别的代码和步骤

《使用Python和PaddleOCR实现图文识别的代码和步骤》在当今数字化时代,图文识别技术的应用越来越广泛,如文档数字化、信息提取等,PaddleOCR是百度开源的一款强大的OCR工具包,它集成了... 目录一、引言二、环境准备2.1 安装 python2.2 安装 PaddlePaddle2.3 安装

Python+PyQt5开发一个Windows电脑启动项管理神器

《Python+PyQt5开发一个Windows电脑启动项管理神器》:本文主要介绍如何使用PyQt5开发一款颜值与功能并存的Windows启动项管理工具,不仅能查看/删除现有启动项,还能智能添加新... 目录开篇:为什么我们需要启动项管理工具功能全景图核心技术解析1. Windows注册表操作2. 启动文件

Python datetime 模块概述及应用场景

《Pythondatetime模块概述及应用场景》Python的datetime模块是标准库中用于处理日期和时间的核心模块,本文给大家介绍Pythondatetime模块概述及应用场景,感兴趣的朋... 目录一、python datetime 模块概述二、datetime 模块核心类解析三、日期时间格式化与

一文带你搞懂Redis Stream的6种消息处理模式

《一文带你搞懂RedisStream的6种消息处理模式》Redis5.0版本引入的Stream数据类型,为Redis生态带来了强大而灵活的消息队列功能,本文将为大家详细介绍RedisStream的6... 目录1. 简单消费模式(Simple Consumption)基本概念核心命令实现示例使用场景优缺点2

Java调用Python的四种方法小结

《Java调用Python的四种方法小结》在现代开发中,结合不同编程语言的优势往往能达到事半功倍的效果,本文将详细介绍四种在Java中调用Python的方法,并推荐一种最常用且实用的方法,希望对大家有... 目录一、在Java类中直接执行python语句二、在Java中直接调用Python脚本三、使用Run

使用Python开发Markdown兼容公式格式转换工具

《使用Python开发Markdown兼容公式格式转换工具》在技术写作中我们经常遇到公式格式问题,例如MathML无法显示,LaTeX格式错乱等,所以本文我们将使用Python开发Markdown兼容... 目录一、工具背景二、环境配置(Windows 10/11)1. 创建conda环境2. 获取XSLT

Python如何调用指定路径的模块

《Python如何调用指定路径的模块》要在Python中调用指定路径的模块,可以使用sys.path.append,importlib.util.spec_from_file_location和exe... 目录一、sys.path.append() 方法1. 方法简介2. 使用示例3. 注意事项二、imp

PyQt5+Python-docx实现一键生成测试报告

《PyQt5+Python-docx实现一键生成测试报告》作为一名测试工程师,你是否经历过手动填写测试报告的痛苦,本文将用Python的PyQt5和python-docx库,打造一款测试报告一键生成工... 目录引言工具功能亮点工具设计思路1. 界面设计:PyQt5实现数据输入2. 文档生成:python-

Python中Flask模板的使用与高级技巧详解

《Python中Flask模板的使用与高级技巧详解》在Web开发中,直接将HTML代码写在Python文件中会导致诸多问题,Flask内置了Jinja2模板引擎,完美解决了这些问题,下面我们就来看看F... 目录一、模板渲染基础1.1 为什么需要模板引擎1.2 第一个模板渲染示例1.3 模板渲染原理二、模板