Android源码学习之六——ActivityManager框架解析

2024-04-07 11:32

本文主要是介绍Android源码学习之六——ActivityManager框架解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ActivityManager在操作系统中有重要的作用,本文利用操作系统源码,逐步理清ActivityManager的框架,并从静态类结构图和动态序列图两个角度分别进行剖析,从而帮助开发人员加强对系统框架及进程通信机制的理解。

ActivityManager的作用

参照SDK的说明,可见ActivityManager的功能是与系统中所有运行着的Activity交互提供了接口,主要的接口围绕着运行中的进程信息,任务信息,服务信息等。比如函数getRunningServices()的源码是:

    public List<RunningServiceInfo> getRunningServices(int maxNum)

            throws SecurityException {

        try {

            return (List<RunningServiceInfo>)ActivityManagerNative.getDefault()

                    .getServices(maxNum, 0);

        } catch (RemoteException e) {

            // System dead, we will be dead too soon!

            return null;

        }

    }

从中可以看到,ActivityManager的大多数功能都是调用了ActivityManagerNative类接口来完成的,因此,我们寻迹来看ActivityManagerNative的代码,并以此揭示ActivityManager的整体框架。

ActivityManager的静态类图

通过源吗,可以发现ActivityManagerNative类的继承关系如下:

public abstract class ActivityManagerNative extends Binder implements IActivityManager

继承自Binder类,同时实现了IActivityManager接口。

同样的,我们继续沿Binder和IActivityManager上溯,整理出如下图所示的类结构图。

 

在这张图中,绿色的部分是在SDK中开放给应用程序开发人员的接口,蓝色的部分是一个典型的Proxy模式,红色的部分是底层的服务实现,是真正的动作执行者。这里的一个核心思想是Proxy模式,我们接下来对此模式加以介绍。

Proxy模式

Proxy模式,也称代理模式,是经典设计模式中的一种结构型模式,其定义是为其他对象提供一种代理以控制对这个对象的访问,简单的说就是在访问和被访问对象中间加上的一个间接层,以隔离访问者和被访问者的实现细节。

结合上面的类结构图,其中ActivityManager是一个客户端,为了隔离它与ActivityManagerService,有效降低甚至消除二者的耦合度,在这中间使用了ActivityManagerProxy代理类,所有对ActivityManagerService的访问都转换成对代理类的访问,这样ActivityManager就与ActivityManagerService解耦了。这就是代理模式的典型应用场景。

为了让代理类与被代理类保持一致的接口,从而实现更加灵活的类结构,或者说完美的屏蔽实现细节,通常的作法是让代理类与被代理类实现一个公共的接口,这样对调用者来说,无法知道被调用的是代理类还是直接是被代理类,因为二者的接口是相同的。

这个思路在上面的类结构图里也有落实,IActivityManager接口类就是起的这个作用。

以上就是代理模式的思路,有时我们也称代理类为本地代理(Local Proxy),被代理类为远端代理(Remote Proxy)。

本地代理与远端代理的Binder

我们再来看一下Binder类的作用,Binder的含义可能译为粘合剂更为贴切,即将两侧的东西粘贴起来。在操作系统中,Binder的一大作用就是连接本地代理和远端代理。Binder中最重要的一个函数是:

    public final boolean transact(int code, Parcel data, Parcel reply,

            int flags) throws RemoteException {

                   ……

        boolean r = onTransact(code, data, reply, flags);

        if (reply != null) {

            reply.setDataPosition(0);

        }

        return r;

    }

它的作用就在于通过code来表示请求的命令标识,通过data和reply进行数据传递,只要远端代理能实现onTransact()函数,即可做出正确的动作,远端的执行接口被完全屏蔽了。

当然,Binder的实现还是很复杂的,不仅是类型转换,还要透过Binder驱动进入KERNEL层来完成进程通信,这些内容不在本文的范围之内,故此处不再深入解析相应的机制。此处我们只要知道Binder的transact()函数实现就可以了。

到此为止,我们对ActivityManager的静态类结构就分析完了,但这还不足以搞清在系统运行中的调用过程,因此,我们以下图的序列图为基础,结合源码探索一下ActivityManager运行时的机制。

动态序列图

 

 

我们以ActivityManager的getRunningServices()函数为例,对上述序列图进行解析。

    public List<RunningServiceInfo> getRunningServices(int maxNum)

            throws SecurityException {

        try {

            return (List<RunningServiceInfo>)ActivityManagerNative.getDefault()

                    .getServices(maxNum, 0);

        } catch (RemoteException e) {

            // System dead, we will be dead too soon!

            return null;

        }

    }

可以看到,调用被委托到了ActivatyManagerNative.getDefault()。

    static public IActivityManager asInterface(IBinder obj)

{

                   ……

        return new ActivityManagerProxy(obj);

    }

   

    static public IActivityManager getDefault()

{

……

        IBinder b = ServiceManager.getService("activity");

        gDefault = asInterface(b);

        return gDefault;

    }

从上述简化后的源码可以看到,getDefault()函数返回的是一个ActivityManagerProxy对象的引用,也就是说,ActivityManager得到了一个本地代理。

因为在IActivityManager接口中已经定义了getServices()函数,所以我们来看这个本地代理对该函数的实现。

    public List getServices(int maxNum, int flags) throws RemoteException {

        Parcel data = Parcel.obtain();

        Parcel reply = Parcel.obtain();

                   ……

        mRemote.transact(GET_SERVICES_TRANSACTION, data, reply, 0);

        ……

    }

从这个代码版段我们看到,调用远端代理的transact()函数,而这个mRemote就是ActivityManagerNative的Binder接口。

接下来我们看一下ActivityManagerNative的代码,因为该类是继承于Binder类的,所以transact的机制此前我们已经展示了代码,对于该类而言,重要的是对onTransact()函数的实现。

    public boolean onTransact(int code, Parcel data, Parcel reply, int flags)

            throws RemoteException {

        switch (code) {

        case GET_SERVICES_TRANSACTION: {

                            ……

            List list = getServices(maxNum, fl);

                            ……

            return true;

        }

……

        }

        return super.onTransact(code, data, reply, flags);

    }

在onTrasact()函数内,虽然代码特别多,但就是一个switch语句,根据不同的code命令进行不同的处理,比如对于GET_SERVICES_TRANSACTION命令,只是调用了getServices()函数。而该函数的实现是在ActivityManagerService类中,它是ActivityManagerNative的子类,对于该函数的实现细节,不在本文中详细分析。

Activity启动

在经过前文的学习以后,我们一起来整理一下Activity的启动机制。就从Activity的startActivity()函数开始吧。

startActivity()函数调用了startActivityForResult()函数,该函数有源码如下:

    public void startActivityForResult(Intent intent, int requestCode) {

        ……

            Instrumentation.ActivityResult ar =

                mInstrumentation.execStartActivity(

                    this, mMainThread.getApplicationThread(), mToken, this,

                    intent, requestCode);

                   ……

    }

可见,功能被委托给Instrumentation对象来执行了。这个类的功能是辅助Activity的监控和测试,在此我们不详细描述,我们来看它的execStartActivity()函数。

    public ActivityResult execStartActivity(

        Context who, IBinder contextThread, IBinder token, Activity target,

        Intent intent, int requestCode) {

                   ……

        try {

            int result = ActivityManagerNative.getDefault()

                .startActivity(whoThread, intent,

                        intent.resolveTypeIfNeeded(who.getContentResolver()),

                        null, 0, token, target != null ? target.mEmbeddedID : null,

                        requestCode, false, false);

            checkStartActivityResult(result, intent);

        } catch (RemoteException e) {

        }

        return null;

    }

在这个函数里,我们看到了前文熟悉的ActivityManagerNative.getDefault(),没错,利用了ActivityManagerService。通过前文的线索,利用Proxy模式,我们可以透过ActivityManagerProxy,通过Binder的transact机制,找到真正的动作执行者,即ActivityManagerService类的startActivity()函数,并沿此线索继续追踪源码,在startActivityLocked()函数里边看到了mWindowManager.setAppStartingWindow的语句调用,mWindowManager是WindowManagerService对象,用于负责界面上的具体窗口调试。

通过这样的源码追踪,我们了解到了Activity启动的底层实现机制,也加深了对Proxy模式和Binder机制的理解。从而为学习其他框架打下了基础。

总结

本文从静态类结构和动态类结构两个角度分析了ActivityManager的框架,兼顾了Binder机制和代理模式在进程间通信的机理,对帮助开发人员深化操作系统的结构和框架具有一定的指导作用。

这篇关于Android源码学习之六——ActivityManager框架解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/882485

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java JDK Validation 注解解析与使用方法验证

《JavaJDKValidation注解解析与使用方法验证》JakartaValidation提供了一种声明式、标准化的方式来验证Java对象,与框架无关,可以方便地集成到各种Java应用中,... 目录核心概念1. 主要注解基本约束注解其他常用注解2. 核心接口使用方法1. 基本使用添加依赖 (Maven

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二