深度学习500问——Chapter06: 循环神经网络(RNN)(2)

2024-04-07 07:36

本文主要是介绍深度学习500问——Chapter06: 循环神经网络(RNN)(2),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

6.4 CNN和RNN的区别

6.5 RNNs与FNNs有什么区别

6.6 RNNs训练和传统ANN训练异同点

6.7 为什么RNN训练的时候Loss波动很大

6.8 标准RNN前向输出流程

6.9 BPTT算法推导

6.9 RNN中为什么会出现梯度消失

6.10 如何解决RNN中的梯度消失问题


6.4 CNN和RNN的区别

类别特点描述
相同点

1、传统神经网络的扩展

2、前向计算产生结果,反向计算模型更新

3、每层神经网络横向可以多个神经元共存,纵向可以有多层神经网络连接

不同点

1、CNN空间扩展,神经元与特征卷积;RNN时间扩展,神经元与多个时间输出计算

2、RNN可以用于描述时间上连续状态的输出,有记忆功能,CNN用于静态输出

6.5 RNNs与FNNs有什么区别

1. 不同于传统的前馈神经网络(FNNs),RNNs引入了定向循环,能够处理输入之间前后关联问题。

2. RNNs可以记忆之前步骤的训练信息。

定向循环结构如下图所示:

6.6 RNNs训练和传统ANN训练异同点

相同点:

  • RNNs与传统ANN都使用BP(Back Propagation)误差反向传播算法。

不同点:

  • RNNs网络参数W,U,V是共享的(具体在本章6.2节中已介绍),而传统神经网络各层参数间没有直接联系。
  • 对于RNNs,在使用梯度下降算法中,每一步的输出不仅依赖当前步的网络,还依赖于之前若干步的网络状态。

6.7 为什么RNN训练的时候Loss波动很大

由于RNN特有的memory会影响后期其他的RNN的特点,梯度时大时小,learning rate没法个性化的调整,导致RNN在train的过程中,Loss会震荡起伏,为理论解决RNN的这个问题,在训练的时候,可以设置临界值,当梯度大于某个临界值,直接截断,用这个临界值作为梯度的大小,防止大幅震荡。

6.8 标准RNN前向输出流程

x表示输入,h是隐层单元,o是输出,L为损失函数,y为训练集标签。t表示t时刻的状态,V,U,W是权值,同一类型的连接权值相同。以下图为例进行说明标准RNN的前向传播算法:

对于t时刻,h^{(t)}=\phi(Ux^{(t)}+Wh^{(t-1)}+b),其中\phi()为激活函数,一般会选择tanh函数,b为偏置。

t时刻的输出为:o^{(t)}=Vh^{(t)}+c

模型的预测输出为:\widehat{y}^{(t)}=\sigma(o^{(t)})

其中,\sigma为激活函数,通常RNN用于分类,故这里一般用softmax函数。

6.9 BPTT算法推导

BPTT(back-propagation through time)算法是常用的训练RNN的方法,其本质还是BP算法,只不过RNN处理时间序列数据,所以要基于时间反向传播,故叫随时间反向传播。BPTT的中心思想进而BP算法相同,沿着需要优化的参数的负梯度方向不断寻找更优的点直至收敛。

需要寻优的参数有三个,分别是U、V、W。与BP算法不同的是,其中W和U两个参数的寻优过程需要追溯之前的历史数据,参数V相对简单只需关注目前,那么我们就先来求解参数V的偏导数。

\frac{\partial L^{(t)}}{\partial V}=\frac{\partial L^{(t)}}{\partial o^{(t)}}\cdot \frac{\partial o^{(t)}}{\partial V}

RNN的损失也是会随着时间累加的,所以不能只求t时刻的偏导。

L=\sum_{t=1}^{n}L^{(t)}

\frac{\partial L}{\partial V}=\sum ^n_{t=1}\frac{\partial L^{(t)}}{\partial o^{(t)}}\cdot \frac{\partial o^{(t)}}{\partial V}

W和U的偏导的求解由于需要涉及历史数据,其偏导求起来相当复杂。为了简化推导过程,我们假设只有三个时刻,那么在第三个时刻LWLU的偏导数分别为:

\frac{\partial L^{(3)}}{\partial W}=\frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial W}+\frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial h^{(2)}}\frac{\partial h^{(2)}}{\partial W}+\frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial h^{(2)}}\frac{\partial h^{(2)}}{\partial h^{(1)}}\frac{\partial h^{(1)}}{\partial W}

\frac{\partial L^{(3)}}{\partial U}=\frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial U}+\frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial h^{(2)}}\frac{\partial h^{(2)}}{\partial U}+\frac{\partial L^{(3)}}{\partial o^{(3)}}\frac{\partial o^{(3)}}{\partial h^{(3)}}\frac{\partial h^{(3)}}{\partial h^{(2)}}\frac{\partial h^{(2)}}{\partial h^{(1)}}\frac{\partial h^{(1)}}{\partial U}

可以观察到,在某个时刻的对W或是U的偏导数,需要追溯这个时刻之前所有时刻的信息。根据上面两个式子得出Lt时刻对WU偏导数的通式:

\frac{\partial L^{(t)}}{\partial W}=\sum_{k=0}^{t}\frac{\partial L^{(t)}}{\partial o^{(t)}}\frac{\partial o^{(t)}}{\partial h^{(t)}}(\prod_{j=k+1}^{t}\frac{\partial h^{(j)}}{\partial h^{(j-1)}})\frac{\partial h^{(k)}}{\partial W}

\frac{\partial L^{(t)}}{\partial U}=\sum_{k=0}^{t}\frac{\partial L^{(t)}}{\partial o^{(t)}}\frac{\partial o^{(t)}}{\partial h^{(t)}}(\prod_{j=k+1}^{t}\frac{\partial h^{(j)}}{\partial h^{(j-1)}})\frac{\partial h^{(k)}}{\partial U}

整体的偏导公式就是将其按时刻再一一加起来。

6.9 RNN中为什么会出现梯度消失

首先来看tanh函数的函数及导数图如下所示:

sigmoid函数的函数及导数图如下所示:

从上图观察可知,sigmoid函数的导数范围是(0,0.25],tanh函数的导数范围是(0,1],它们的导数最大都不大于1。

基于6.8章节中公式的推导,RNN的激活函数是嵌套在里面的,如果选择激活函数为tanh或sigmoid,把激活函数放进去,拿出中间累乘的那部分可得:

\prod_{j=k+1}^{t}{\frac{\partial{h^{j}}}{\partial{h^{j-1}}}} = \prod_{j=k+1}^{t}{tanh^{'}}\cdot W_{s}

\prod_{j=k+1}^{t}{\frac{\partial{h^{j}}}{\partial{h^{j-1}}}} = \prod_{j=k+1}^{t}{sigmoid^{'}}\cdot W_{s}

梯度消失现象:

基于上式,会发现累乘会导致激活函数导数的累乘,如果取tanh或sigmoid函数作为激活函数的话,那么必然是一堆小数在做乘法,结果就是越乘越小。随着时间序列的不断深入,小数的累乘就会导致梯度越来越小直到接近于0,这就是“梯度消失”现象。

实际使用中,会优先选择tanh函数,原因是tanh函数相对于sigmoid函数来说梯度较大,收敛速度更快且引起梯度消失更慢。

6.10 如何解决RNN中的梯度消失问题

上节描述的梯度消失是在无限的利用历史数据而造成,但是RNN的特点本来就是能利用历史数据获取更多的可利用信息,解决RNN中的梯度消失方法主要有:

  1. 选取更好的激活函数,如ReLU激活函数。ReLU函数的左侧导数为0,右侧导数恒为1,这就避免了“梯度消失”的发生。但恒为1的导数容易导致“梯度爆炸”,但设定合适的阈值可以解决这个问题。
  2. 加入BN层,其优点包括可加速收敛、控制过拟合,可以少用或不用Dropout和正则、降低网络对初始化权重不敏感,且能允许使用较大的学习率等。
  3. 改变传播结构,LSTM结构可以有效解决这个问题。

这篇关于深度学习500问——Chapter06: 循环神经网络(RNN)(2)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/881996

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

Java中的for循环高级用法

《Java中的for循环高级用法》本文系统解析Java中传统、增强型for循环、StreamAPI及并行流的实现原理与性能差异,并通过大量代码示例展示实际开发中的最佳实践,感兴趣的朋友一起看看吧... 目录前言一、基础篇:传统for循环1.1 标准语法结构1.2 典型应用场景二、进阶篇:增强型for循环2.

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Python循环结构全面解析

《Python循环结构全面解析》循环中的代码会执行特定的次数,或者是执行到特定条件成立时结束循环,或者是针对某一集合中的所有项目都执行一次,这篇文章给大家介绍Python循环结构解析,感兴趣的朋友跟随... 目录for-in循环while循环循环控制语句break语句continue语句else子句嵌套的循

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和