多元线性回归实战(二元)

2024-04-07 03:48

本文主要是介绍多元线性回归实战(二元),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一:算法具体实现

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
data=np.genfromtxt("data1.csv",delimiter=",")
x_data=data[:,:-1]
y_data=data[:,-1]
lr=0.0001
k1=k2=b=0
epoches=1000
def compute_error(k1,k2,b,x_data,y_data):totalError=0for i in range(0,len(x_data)):totalError+=(y_data[i]-(k1*x_data[i,0]+k2*x_data[i,1]+b))**2return totalError/float(len(x_data))
def function(x_data,y_data,k1,k2,b,lr,epoches):m = float(len(x_data))for i in range(epoches):k1_grad=k2_grad=b_grad=0for j in range(0,len(x_data)):b_grad+=(1/m)*((k1*x_data[j,0]+k2*x_data[j,1]+b)-y_data[j])k1_grad+=(1/m)*x_data[j,0]*((k1*x_data[j,0]+k2*x_data[j,1]+b)-y_data[j])k2_grad+=(1/m)*x_data[j,1]*((k1*x_data[j,0]+k2*x_data[j,1]+b)-y_data[j])k1-=(lr*k1_grad)k2-=(lr*k2_grad)b-=(lr*b_grad)return k1,k2,b
compute_error(k1,k2,b,x_data,y_data)
k1,k2,b=function(x_data,y_data,k1,k2,b,lr,epoches)
ax=plt.figure().add_subplot(111,projection="3d")
ax.scatter(x_data[:,0],x_data[:,1],y_data,c="r",marker="o",s=100)
x0=x_data[:,0]
x1=x_data[:,1]
x0,x1=np.meshgrid(x0,x1)
z=k1*x0+k2*x1+b
ax.plot_surface(x0,x1,z)
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")
plt.show()

 

二:sklearn调用实现

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from mpl_toolkits.mplot3d import Axes3D
data=np.genfromtxt("data1.csv",delimiter=",")
x_data=data[:,:-1]
y_data=data[:,-1]
model=LinearRegression()
model.fit(x_data,y_data)
LinearRegression(copy_X=True,fit_intercept=True,n_jobs=1,normalize=False)
ax=plt.figure().add_subplot(111,projection="3d")
ax.scatter(x_data[:,0],x_data[:,1],y_data,c="r",marker="o",s=100)
x0=x_data[:,0]
x1=x_data[:,1]
x0,x1=np.meshgrid(x0,x1)
z=model.coef_[0]*x0+model.coef_[1]*x1+model.intercept_
ax.plot_surface(x0,x1,z)
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_zlabel("z")
plt.show()

这篇关于多元线性回归实战(二元)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/881568

相关文章

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Java Spring 中的监听器Listener详解与实战教程

《JavaSpring中的监听器Listener详解与实战教程》Spring提供了多种监听器机制,可以用于监听应用生命周期、会话生命周期和请求处理过程中的事件,:本文主要介绍JavaSprin... 目录一、监听器的作用1.1 应用生命周期管理1.2 会话管理1.3 请求处理监控二、创建监听器2.1 Ser

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

基于C#实现MQTT通信实战

《基于C#实现MQTT通信实战》MQTT消息队列遥测传输,在物联网领域应用的很广泛,它是基于Publish/Subscribe模式,具有简单易用,支持QoS,传输效率高的特点,下面我们就来看看C#实现... 目录1、连接主机2、订阅消息3、发布消息MQTT(Message Queueing Telemetr

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx