OpenTSDB原理系列:元数据模型

2024-04-06 19:08

本文主要是介绍OpenTSDB原理系列:元数据模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文作为介绍OpenTSDB原理系列文章的第一篇,主要介绍了时序数据以及OpenTSDB的一些基础概念,以及OpenTSDB中的元数据模型定义。

什么是时序数据?

Wiki中关于”时间序列(Time Series)“的定义:

时间序列(Time Series)是一组按照时间发生先后顺序进行排列的数据点序列,通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,1小时等)。

时间序列数据可被简称为时序数据

实时监控系统所收集的监控指标数据,通常就是时序数据 。时序数据具有如下特点:

  • 每一个时间序列通常为某一固定类型数值
  • 数据按一定的时间间隔持续产生,每条数据拥有自己的时间戳信息
  • 通常只会不断的写入新的数据,几乎不会有更新删除的场景
  • 在读取上,也往往倾向于读取最近写入的数据。

正是因为这些特点,通常使用专门的时序数据库来存储,因为这类数据库更能理解时序数据((TSDB))的特点,而且在读写上做一些针对性的优化。相信在在即将大范围普及的物联网(IoT)应用场景中,时序数据库(TSDB)会得到更加广泛的应用。

OpenTSDB

OpenTSDB是其中一种时序数据库实现,因为基于HBase生态构建而获得了广泛的关注。目前,华为云的CloudTable服务已经推出了OpenTSDB特性。

如下是源自OpenTSDB官方资料中的时序数据样例

sys.cpu.user host=webserver01 1356998400 50

sys.cpu.user host=webserver01,cpu=0 1356998400 1

sys.cpu.user host=webserver01,cpu=1 1356998400 0

sys.cpu.user host=webserver01,cpu=2 1356998400 2

sys.cpu.user host=webserver01,cpu=3 1356998400 0

…………

sys.cpu.user host=webserver01,cpu=63 1356998400 1

对于上面的任意一行数据,在OpenTSDB中称之为一个时间序列中的一个Data Point。以最后一行为例我们说明一下OpenTSDB中关于Data Point的每一部分组成定义如下:

构成信息名称
sys.cpu.usermetrics
hosttagKey
webserver01tagValue
cputagKey
63tagValue
1356998400timestamp
1value

可以看出来,每一个Data Point,都关联一个metrics名称,但可能关联多组<tagKey,tagValue>信息。而关于时间序列,事实上就是具有相同的metrics名称以及相同的<tagKey,tagValue>组信息的Data Points的集合。在存储这些Data Points的时候,大家也很容易可以想到,可以将这些metrics名称以及<tagKey,tagValue>信息进行特殊编码来优化存储,否则会带来极大的数据冗余。OpenTSDB中为每一个metrics名称,tagKey以及tagValue都定义了一个唯一的数字类型的标识码(UID)

UID设计

UID的全称为Unique Identifier。这些UID信息被保存在OpenTSDB的元数据表中,默认表名为”tsdb-uid”。

OpenTSDB分配UID时遵循如下规则:

  • metrics、tagKey和tagValue的UID分别独立分配
  • 每个metrics名称(tagKey/tagValue)的UID值都是唯一。不存在不同的metrics(tagKey/tagValue)使用相同的UID,也不存在同一个metrics(tagKey/tagValue)使用多个不同的UID
  • UID值的范围是0x000000到0xFFFFFF,即metrics(或tagKey、tagValue)最多只能存在16777216个不同的值。

元数据HBase表设计

为了从UID索引到metrics(或tagKey、tagValue),同时也要从metrics(或tagKey、tagValue)索引到UID,OpenTSDB同时保存这两种映射关系数据。

在元数据表中,把这两种数据分别保存到两个名为”id”与”name”的Column Family中,Column Family描述信息如下所示:

{NAME => ‘id’, BLOOMFILTER => ‘ROW’, COMPRESSION => ‘SNAPPY’}
{NAME =>’name’,BLOOMFILTER => ‘ROW’, COMPRESSION => ‘SNAPPY’, MIN_VERSIONS => ‘0’, BLOCKCACHE => ‘true’, BLOCKSIZE => ‘65536’, REPLICATION_SCOPE => ‘0’}

元数据模型

关于metrics名为”cpu.hum”,tagKey值为”host”,tagValue值分别为”189.120.205.26″、”189.120.205.27″的UID信息定义如下:

UID_DEFINITION

说明:

  1. RowKey为”0″的行中,分别保存了metrics、tagKey和tagValue的当前UID的最大值。当为新的metrics、tagKey和tagValue分配了新的UID后,会更新对应的最大值
  2. RowKey为”1″的行中,RowKey为UID,Qualifier为”name:metrics”的值对应metrics name,Qualifier为”name:tagk”的值中存放了tagKey,Qualifier为”name:tagv”的值中存放了tagValue
  3. RowKey为”2″的行中,RowKey为UID,Qualifier为”name:tagv”的值为tagValue,不存在metrics与tagKey信息。
  4. RowKey为”189.120.205.26″的行中,Qualifer为”id:tagv”的值为UID信息。表示当”189.120.205.26″为tagValue时,其UID为1
  5. RowKey为”189.120.205.27″的行中,Qualifer为”id:tagv”的值为UID信息。表示当”189.120.205.26″为tagValue时,其UID为2
  6. RowKey为”cpu.hum”的行中,Qualifer为”id:metrics”的值为UID信息。表示当cpu.hum为metrics时,其UID为1
  7. RowKey为”host”的行中,Qualifer为”id:tagk”的值为UID信息。表示当host为tagValue时,其UID为1

由于HBase的存储数据类型是Bytes,所以UID在存储时会被转换为3个字节长度的Bytes数组进行存储。

TSUID

对每一个Data Point,metrics、timestamp、tagKey和tagValue都是必要的构成元素。除timestamp外,metrics、tagKey和tagValue的UID就可组成一个TSUID,每一个TSUID关联一个时间序列,如下所示:

<metrics_UID><tagKey1_UID><tagValue1_UID>[…<tagKeyN_UID><tagValueN_UID>]

在上一章节的例子中,就涉及两个TSUID,分别是:

TSUID

 

转:http://www.nosqlnotes.com/technotes/opentsdb-schema/

这篇关于OpenTSDB原理系列:元数据模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/880596

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、