OpenTSDB原理系列:元数据模型

2024-04-06 19:08

本文主要是介绍OpenTSDB原理系列:元数据模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文作为介绍OpenTSDB原理系列文章的第一篇,主要介绍了时序数据以及OpenTSDB的一些基础概念,以及OpenTSDB中的元数据模型定义。

什么是时序数据?

Wiki中关于”时间序列(Time Series)“的定义:

时间序列(Time Series)是一组按照时间发生先后顺序进行排列的数据点序列,通常一组时间序列的时间间隔为一恒定值(如1秒,5分钟,1小时等)。

时间序列数据可被简称为时序数据

实时监控系统所收集的监控指标数据,通常就是时序数据 。时序数据具有如下特点:

  • 每一个时间序列通常为某一固定类型数值
  • 数据按一定的时间间隔持续产生,每条数据拥有自己的时间戳信息
  • 通常只会不断的写入新的数据,几乎不会有更新删除的场景
  • 在读取上,也往往倾向于读取最近写入的数据。

正是因为这些特点,通常使用专门的时序数据库来存储,因为这类数据库更能理解时序数据((TSDB))的特点,而且在读写上做一些针对性的优化。相信在在即将大范围普及的物联网(IoT)应用场景中,时序数据库(TSDB)会得到更加广泛的应用。

OpenTSDB

OpenTSDB是其中一种时序数据库实现,因为基于HBase生态构建而获得了广泛的关注。目前,华为云的CloudTable服务已经推出了OpenTSDB特性。

如下是源自OpenTSDB官方资料中的时序数据样例

sys.cpu.user host=webserver01 1356998400 50

sys.cpu.user host=webserver01,cpu=0 1356998400 1

sys.cpu.user host=webserver01,cpu=1 1356998400 0

sys.cpu.user host=webserver01,cpu=2 1356998400 2

sys.cpu.user host=webserver01,cpu=3 1356998400 0

…………

sys.cpu.user host=webserver01,cpu=63 1356998400 1

对于上面的任意一行数据,在OpenTSDB中称之为一个时间序列中的一个Data Point。以最后一行为例我们说明一下OpenTSDB中关于Data Point的每一部分组成定义如下:

构成信息名称
sys.cpu.usermetrics
hosttagKey
webserver01tagValue
cputagKey
63tagValue
1356998400timestamp
1value

可以看出来,每一个Data Point,都关联一个metrics名称,但可能关联多组<tagKey,tagValue>信息。而关于时间序列,事实上就是具有相同的metrics名称以及相同的<tagKey,tagValue>组信息的Data Points的集合。在存储这些Data Points的时候,大家也很容易可以想到,可以将这些metrics名称以及<tagKey,tagValue>信息进行特殊编码来优化存储,否则会带来极大的数据冗余。OpenTSDB中为每一个metrics名称,tagKey以及tagValue都定义了一个唯一的数字类型的标识码(UID)

UID设计

UID的全称为Unique Identifier。这些UID信息被保存在OpenTSDB的元数据表中,默认表名为”tsdb-uid”。

OpenTSDB分配UID时遵循如下规则:

  • metrics、tagKey和tagValue的UID分别独立分配
  • 每个metrics名称(tagKey/tagValue)的UID值都是唯一。不存在不同的metrics(tagKey/tagValue)使用相同的UID,也不存在同一个metrics(tagKey/tagValue)使用多个不同的UID
  • UID值的范围是0x000000到0xFFFFFF,即metrics(或tagKey、tagValue)最多只能存在16777216个不同的值。

元数据HBase表设计

为了从UID索引到metrics(或tagKey、tagValue),同时也要从metrics(或tagKey、tagValue)索引到UID,OpenTSDB同时保存这两种映射关系数据。

在元数据表中,把这两种数据分别保存到两个名为”id”与”name”的Column Family中,Column Family描述信息如下所示:

{NAME => ‘id’, BLOOMFILTER => ‘ROW’, COMPRESSION => ‘SNAPPY’}
{NAME =>’name’,BLOOMFILTER => ‘ROW’, COMPRESSION => ‘SNAPPY’, MIN_VERSIONS => ‘0’, BLOCKCACHE => ‘true’, BLOCKSIZE => ‘65536’, REPLICATION_SCOPE => ‘0’}

元数据模型

关于metrics名为”cpu.hum”,tagKey值为”host”,tagValue值分别为”189.120.205.26″、”189.120.205.27″的UID信息定义如下:

UID_DEFINITION

说明:

  1. RowKey为”0″的行中,分别保存了metrics、tagKey和tagValue的当前UID的最大值。当为新的metrics、tagKey和tagValue分配了新的UID后,会更新对应的最大值
  2. RowKey为”1″的行中,RowKey为UID,Qualifier为”name:metrics”的值对应metrics name,Qualifier为”name:tagk”的值中存放了tagKey,Qualifier为”name:tagv”的值中存放了tagValue
  3. RowKey为”2″的行中,RowKey为UID,Qualifier为”name:tagv”的值为tagValue,不存在metrics与tagKey信息。
  4. RowKey为”189.120.205.26″的行中,Qualifer为”id:tagv”的值为UID信息。表示当”189.120.205.26″为tagValue时,其UID为1
  5. RowKey为”189.120.205.27″的行中,Qualifer为”id:tagv”的值为UID信息。表示当”189.120.205.26″为tagValue时,其UID为2
  6. RowKey为”cpu.hum”的行中,Qualifer为”id:metrics”的值为UID信息。表示当cpu.hum为metrics时,其UID为1
  7. RowKey为”host”的行中,Qualifer为”id:tagk”的值为UID信息。表示当host为tagValue时,其UID为1

由于HBase的存储数据类型是Bytes,所以UID在存储时会被转换为3个字节长度的Bytes数组进行存储。

TSUID

对每一个Data Point,metrics、timestamp、tagKey和tagValue都是必要的构成元素。除timestamp外,metrics、tagKey和tagValue的UID就可组成一个TSUID,每一个TSUID关联一个时间序列,如下所示:

<metrics_UID><tagKey1_UID><tagValue1_UID>[…<tagKeyN_UID><tagValueN_UID>]

在上一章节的例子中,就涉及两个TSUID,分别是:

TSUID

 

转:http://www.nosqlnotes.com/technotes/opentsdb-schema/

这篇关于OpenTSDB原理系列:元数据模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/880596

相关文章

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Spring @Scheduled注解及工作原理

《Spring@Scheduled注解及工作原理》Spring的@Scheduled注解用于标记定时任务,无需额外库,需配置@EnableScheduling,设置fixedRate、fixedDe... 目录1.@Scheduled注解定义2.配置 @Scheduled2.1 开启定时任务支持2.2 创建

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意