CFI查询(三)

2024-04-06 05:08
文章标签 查询 cfi

本文主要是介绍CFI查询(三),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、上一篇通过结构体

static struct chip_probe cfi_chip_probe = {
name: "CFI",
probe_chip: cfi_probe_chip
};

了解到,主要的查询工作要靠probe_chip: cfi_probe_chip函数完成。

其源码如下:

static int cfi_probe_chip(struct map_info *map, __u32 base,
 struct flchip *chips, struct cfi_private *cfi)

这是在上一篇中,调用次函数的情景:

cp->probe_chip(map, 0, NULL, cfi),对比应该能得出对应的参数了。

{
int i;

if ((base + 0) >= map->size) {
printk(KERN_NOTICE
"Probe at base[0x00](0x%08lx) past the end of the map(0x%08lx)\n",
(unsigned long)base, map->size -1);
return 0;
}
if ((base + 0xff) >= map->size) {
printk(KERN_NOTICE
"Probe at base[0x55](0x%08lx) past the end of the map(0x%08lx)\n",
(unsigned long)base + 0x55, map->size -1);
return 0;
}
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);

向闪存芯片发送两条命令,如下表所示


第一条命令是0xf0是芯片进入随机读取状态。

第二条命令是0x98是芯片开始一个CFI查询流程。

函数cfi_send_gen_cmd函数源码如下:

/*
 * Sends a CFI command to a bank of flash for the given geometry.
 *
 * Returns the offset in flash where the command was written.
 * If prev_val is non-null, it will be set to the value at the command address,
 * before the command was written.
 */
static inline __u32 cfi_send_gen_cmd(u_char cmd, __u32 cmd_addr, __u32 base,
struct map_info *map, struct cfi_private *cfi,
int type, cfi_word *prev_val)
{
cfi_word val;
__u32 addr = base +
cfi_build_cmd_addr(cmd_addr, CFIDEV_INTERLEAVE, type);地址换算

val =
cfi_build_cmd(cmd, map, cfi);命令调整

        这两个函数根据具体的芯片格局对地址和命令作出换算和调整。

这是cfi_build_cmd_addr函数源码:

/*
 * Returns the command address according to the given geometry.
 */
static inline __u32 cfi_build_cmd_addr(__u32 cmd_ofs, int interleave, int type)
{
return (cmd_ofs * type) * interleave;
}


这是cfi_build_cmd函数源码:

在有多个芯片并列时,对芯片的命令要写入到并列的每一个芯片中,所以需要根据具体的情况将命令重复几次。CFI规定16位和32位数据均采用“小端”格式,而有些CPU采用“大端”格式,所以要通过函数cpu_to_cfi32转化。如果CPU本就是“小端”,则本函数为空。
/*
 * Transforms the CFI command for the given geometry (bus width & interleave.
 */
static inline cfi_word cfi_build_cmd(u_char cmd, struct map_info *map, struct cfi_private *cfi)
{
cfi_word val = 0;


if (cfi_buswidth_is_1()) {
/* 1 x8 device */
val = cmd;
} else if (cfi_buswidth_is_2()) {
if (cfi_interleave_is_1()) {
/* 1 x16 device in x16 mode */
val = cpu_to_cfi16(cmd);
} else if (cfi_interleave_is_2()) {
/* 2 (x8, x16 or x32) devices in x8 mode */
val = cpu_to_cfi16((cmd << 8) | cmd);
}
} else if (cfi_buswidth_is_4()) {
if (cfi_interleave_is_1()) {
/* 1 x32 device in x32 mode */
val = cpu_to_cfi32(cmd);
} else if (cfi_interleave_is_2()) {
/* 2 x16 device in x16 mode */
val = cpu_to_cfi32((cmd << 16) | cmd);
} else if (cfi_interleave_is_4()) {
/* 4 (x8, x16 or x32) devices in x8 mode */
val = (cmd << 16) | cmd;
val = cpu_to_cfi32((val << 8) | val);
}
#ifdef CFI_WORD_64
} else if (cfi_buswidth_is_8()) {
if (cfi_interleave_is_1()) {
/* 1 x64 device in x64 mode */
val = cpu_to_cfi64(cmd);
} else if (cfi_interleave_is_2()) {
/* 2 x32 device in x32 mode */
val = cmd;
val = cpu_to_cfi64((val << 32) | val);
} else if (cfi_interleave_is_4()) {
/* 4 (x16, x32 or x64) devices in x16 mode */
val = (cmd << 16) | cmd;
val = cpu_to_cfi64((val << 32) | val);
} else if (cfi_interleave_is_8()) {
/* 8 (x8, x16 or x32) devices in x8 mode */
val = (cmd << 8) | cmd;
val = (val << 16) | val;
val = (val << 32) | val;
val = cpu_to_cfi64(val);
}
#endif /* CFI_WORD_64 */
}
return val;
}

if (prev_val)
*prev_val = cfi_read(map, addr);

cfi_write(map, val, addr);

return addr - base;
}

注:CFI查询中所用的地址都是以芯片本身的存储单元为单位的,而CPU使用的32位地址则是字节地址,所以要根据芯片的宽度加以换算。当采用多个芯片并列时实际上相当于改变了芯片宽度,因此需要进一步加以换算。


/*
 * Read a value according to the bus width.
 */


static inline cfi_word cfi_read(struct map_info *map, __u32 addr)
{
if (cfi_buswidth_is_1()) {
return map->read8(map, addr);
} else if (cfi_buswidth_is_2()) {
return map->read16(map, addr);
} else if (cfi_buswidth_is_4()) {
return map->read32(map, addr);
} else if (cfi_buswidth_is_8()) {
return map->read64(map, addr);
} else {
return 0;
}
}

此函数从目标地址中读出数据,具体的调用那个函数取决于数据宽度和map_info结构中的函数指针。

cfi_write也类似。
/*
 * Write a value according to the bus width.
 */

static inline void cfi_write(struct map_info *map, cfi_word val, __u32 addr)
{
if (cfi_buswidth_is_1()) {
map->write8(map, val, addr);
} else if (cfi_buswidth_is_2()) {
map->write16(map, val, addr);
} else if (cfi_buswidth_is_4()) {
map->write32(map, val, addr);
} else if (cfi_buswidth_is_8()) {
map->write64(map, val, addr);
}
}





if (!qry_present(map,base,cfi))
return 0;


if (!cfi->numchips) {
/* This is the first time we're called. Set up the CFI 
  stuff accordingly and return */
return cfi_chip_setup(map, cfi);
}


/* Check each previous chip to see if it's an alias */
for (i=0; i<cfi->numchips; i++) {
/* This chip should be in read mode if it's one
  we've already touched. */
if (qry_present(map,chips[i].start,cfi)) {
/* Eep. This chip also had the QRY marker. 
* Is it an alias for the new one? */
cfi_send_gen_cmd(0xF0, 0, chips[i].start, map, cfi, cfi->device_type, NULL);


/* If the QRY marker goes away, it's an alias */
if (!qry_present(map, chips[i].start, cfi)) {
printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
      map->name, base, chips[i].start);
return 0;
}
/* Yes, it's actually got QRY for data. Most 
* unfortunate. Stick the new chip in read mode
* too and if it's the same, assume it's an alias. */
/* FIXME: Use other modes to do a proper check */
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);

if (qry_present(map, base, cfi)) {
printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
      map->name, base, chips[i].start);
return 0;
}
}
}

/* OK, if we got to here, then none of the previous chips appear to
  be aliases for the current one. */
if (cfi->numchips == MAX_CFI_CHIPS) {
printk(KERN_WARNING"%s: Too many flash chips detected. Increase MAX_CFI_CHIPS from %d.\n", map->name, MAX_CFI_CHIPS);
/* Doesn't matter about resetting it to Read Mode - we're not going to talk to it anyway */
return -1;
}
chips[cfi->numchips].start = base;
chips[cfi->numchips].state = FL_READY;
cfi->numchips++;

/* Put it back into Read Mode */
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);


printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit mode\n",
      map->name, cfi->interleave, cfi->device_type*8, base,
      map->buswidth*8);

return 1;
}

下一篇接着说:

这篇关于CFI查询(三)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/879069

相关文章

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

基于Go语言开发一个 IP 归属地查询接口工具

《基于Go语言开发一个IP归属地查询接口工具》在日常开发中,IP地址归属地查询是一个常见需求,本文将带大家使用Go语言快速开发一个IP归属地查询接口服务,有需要的小伙伴可以了解下... 目录功能目标技术栈项目结构核心代码(main.go)使用方法扩展功能总结在日常开发中,IP 地址归属地查询是一个常见需求:

MySQL之复合查询使用及说明

《MySQL之复合查询使用及说明》文章讲解了SQL复合查询中emp、dept、salgrade三张表的使用,涵盖多表连接、自连接、子查询(单行/多行/多列)及合并查询(UNION/UNIONALL)等... 目录复合查询基本查询回顾多表查询笛卡尔积自连接子查询单行子查询多行子查询多列子查询在from子句中使

Vue3 如何通过json配置生成查询表单

《Vue3如何通过json配置生成查询表单》本文给大家介绍Vue3如何通过json配置生成查询表单,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录功能实现背景项目代码案例功能实现背景通过vue3实现后台管理项目一定含有表格功能,通常离不开表单

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路

MySQL 数据库表与查询操作实战案例

《MySQL数据库表与查询操作实战案例》本文将通过实际案例,详细介绍MySQL中数据库表的设计、数据插入以及常用的查询操作,帮助初学者快速上手,感兴趣的朋友跟随小编一起看看吧... 目录mysql 数据库表操作与查询实战案例项目一:产品相关数据库设计与创建一、数据库及表结构设计二、数据库与表的创建项目二:员