Documentation\input\input-programming.txt(输入子系统驱动编写)

本文主要是介绍Documentation\input\input-programming.txt(输入子系统驱动编写),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


Programming input drivers其实说是翻译,都有点名不副实,基本都是原文,但这篇帮助文档真的很不错。

1. Creating an input device driver  编写一个输入设备驱动
1.0 The simplest example
Here comes a very simple example of an input device driver. The device has
just one button and the button is accessible at i/o port BUTTON_PORT. When

pressed or released a BUTTON_IRQ happens. 这个输入设备只有一个按键,按键被连接到一条中断线上,当按键被按下时,将产生一个中断,内核将检测到这个中断,并对其进行处理。

The driver could look like:


#include <linux/input.h>
#include <linux/module.h>
#include <linux/init.h>

#include <asm/irq.h>
#include <asm/io.h>

static struct input_dev *button_dev;


static irqreturn_t button_interrupt(int irq, void *dummy)
{
input_report_key(button_dev, BTN_0, inb(BUTTON_PORT) & 1);
input_sync(button_dev);
return IRQ_HANDLED;
}

static int __init button_init(void)
{
int error;


if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button", NULL)) {
                printk(KERN_ERR "button.c: Can't allocate irq %d\n", button_irq);
                return -EBUSY;
        }


button_dev = input_allocate_device();
if (!button_dev) {
printk(KERN_ERR "button.c: Not enough memory\n");
error = -ENOMEM;
goto err_free_irq;
}


button_dev->evbit[0] = BIT_MASK(EV_KEY);
button_dev->keybit[BIT_WORD(BTN_0)] = BIT_MASK(BTN_0);


error = input_register_device(button_dev);
if (error) {
printk(KERN_ERR "button.c: Failed to register device\n");
goto err_free_dev;
}


return 0;


 err_free_dev:
input_free_device(button_dev);
 err_free_irq:
free_irq(BUTTON_IRQ, button_interrupt);
return error;
}


static void __exit button_exit(void)
{
        input_unregister_device(button_dev);
free_irq(BUTTON_IRQ, button_interrupt);
}


module_init(button_init);
module_exit(button_exit);


1.1 What the example does
~~~~~~~~~~~~~~~~~~~~~~~~~

First it has to include the <linux/input.h> file, which interfaces to the
input subsystem.
This provides all the definitions needed.

In the _init function, which is called either upon module load or when
booting the kernel, it grabs the required resources (it should also check
for the presence of the device).


Then it allocates a new input device structure with input_allocate_device()
and sets up input bitfields. This way the device driver tells the other
parts of the input systems what it is - what events can be generated or
accepted by this input device.
Our example device can only generate EV_KEY
type events, and from those only BTN_0 event code. Thus we only set these
two bits. We could have used


set_bit(EV_KEY, button_dev.evbit);
set_bit(BTN_0, button_dev.keybit);

as well, but with more than single bits the first approach tends to be
shorter.


Then the example driver registers the input device structure by calling
input_register_device(&button_dev);
This adds the button_dev structure to linked lists of the input driver and
calls device handler modules _connect functions to tell them a new input
device has appeared.
input_register_device() may sleep and therefore must
not be called from an interrupt or with a spinlock held.


While in use, the only used function of the driver is
button_interrupt()
which upon every interrupt from the button checks its state and reports it

via the


input_report_key()
call to the input system. There is no need to check whether the interrupt
routine isn't reporting two same value events (press, press for example) to
the input system, because the input_report_* functions check that
themselves.


Then there is the

input_sync()

call to tell those who receive the events that we've sent a complete report.
This doesn't seem important in the one button case, but is quite important
for for example mouse movement, where you don't want the X and Y values
to be interpreted separately, because that'd result in a different movement.


1.2 dev->open() and dev->close()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In case the driver has to repeatedly poll the device, because it doesn't
have an interrupt coming from it and the polling is too expensive to be done
all the time, or if the device uses a valuable resource (eg. interrupt), it
can use the open and close callback to know when it can stop polling or
release the interrupt and when it must resume polling or grab the interrupt
again. To do that, we would add this to our example driver:

static int button_open(struct input_dev *dev)
{
if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button", NULL)) {
                printk(KERN_ERR "button.c: Can't allocate irq %d\n", button_irq);
                return -EBUSY;
        }


        return 0;
}
static void button_close(struct input_dev *dev)
{
        free_irq(IRQ_AMIGA_VERTB, button_interrupt);
}


static int __init button_init(void)
{
...
button_dev->open = button_open;
button_dev->close = button_close;
...
}

Note that input core keeps track of number of users for the device and
makes sure that dev->open() is called only when the first user connects
to the device and that dev->close() is called when the very last user
disconnects. Calls to both callbacks are serialized.

The open() callback should return a 0 in case of success or any nonzero value
in case of failure. The close() callback (which is void) must always succeed.


1.3 Basic event types
~~~~~~~~~~~~~~~~~~~~~
The most simple event type is EV_KEY, which is used for keys and buttons.
It's reported to the input system via:


input_report_key(struct input_dev *dev, int code, int value)

See linux/input.h for the allowable values of code (from 0 to KEY_MAX).
Value is interpreted as a truth value, ie any nonzero value means key
pressed, zero value means key released.
The input code generates events only
in case the value is different from before.


In addition to EV_KEY, there are two more basic event types: EV_REL and
EV_ABS. They are used for relative and absolute values supplied by the
device.
A relative value may be for example a mouse movement in the X axis.
The mouse reports it as a relative difference from the last position,
because it doesn't have any absolute coordinate system to work in. Absolute
events are namely for joysticks and digitizers - devices that do work in an
absolute coordinate systems.


Having the device report EV_REL buttons is as simple as with EV_KEY, simply  相对坐标
set the corresponding bits and call the

input_report_rel(struct input_dev *dev, int code, int value)


function. Events are generated only for nonzero value.


However EV_ABS requires a little special care. Before calling   绝对坐标有关
input_register_device, you have to fill additional fields in the input_dev
struct for each absolute axis your device has. If our button device had also
the ABS_X axis:


button_dev.absmin[ABS_X] = 0;
button_dev.absmax[ABS_X] = 255;
button_dev.absfuzz[ABS_X] = 4;
button_dev.absflat[ABS_X] = 8;


Or, you can just say:
input_set_abs_params(button_dev, ABS_X, 0, 255, 4, 8);


This setting would be appropriate for a joystick X axis, with the minimum of
0, maximum of 255 (which the joystick *must* be able to reach, no problem if
it sometimes reports more, but it must be able to always reach the min and
max values), with noise in the data up to +- 4, and with a center flat
position of size 8.


If you don't need absfuzz and absflat, you can set them to zero, which mean
that the thing is precise and always returns to exactly the center position
(if it has any).


1.4 BITS_TO_LONGS(), BIT_WORD(), BIT_MASK()
~~~~~~~~~~~~~~~~~~~~~~~~~~

These three macros from bitops.h help some bitfield computations:

BITS_TO_LONGS(x) - returns the length of a bitfield array in longs for
  x bits
BIT_WORD(x) - returns the index in the array in longs for bit x
BIT_MASK(x) - returns the index in a long for bit x


1.5 The id* and name fields
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The dev->name should be set before registering the input device by the input
device driver. It's a string like 'Generic button device' containing a
user friendly name of the device.


The id* fields contain the bus ID (PCI, USB, ...), vendor ID and device ID
of the device. The bus IDs are defined in input.h. The vendor and device ids
are defined in pci_ids.h, usb_ids.h and similar include files. These fields
should be set by the input device driver before registering it.


The idtype field can be used for specific information for the input device
driver.


The id and name fields can be passed to userland via the evdev interface.


1.6 The keycode, keycodemax, keycodesize fields
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
These three fields should be used by input devices that have dense keymaps.
The keycode is an array used to map from scancodes to input system keycodes.
The keycode max should contain the size of the array and keycodesize the
size of each entry in it (in bytes).


Userspace can query and alter current scancode to keycode mappings using
EVIOCGKEYCODE and EVIOCSKEYCODE ioctls on corresponding evdev interface.
When a device has all 3 aforementioned fields filled in, the driver may
rely on kernel's default implementation of setting and querying keycode
mappings.


1.7 dev->getkeycode() and dev->setkeycode()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
getkeycode() and setkeycode() callbacks allow drivers to override default
keycode/keycodesize/keycodemax mapping mechanism provided by input core
and implement sparse keycode maps.


1.8 Key autorepeat
~~~~~~~~~~~~~~~~~~

... is simple. It is handled by the input.c module. Hardware autorepeat is
not used, because it's not present in many devices and even where it is
present, it is broken sometimes (at keyboards: Toshiba notebooks). To enable
autorepeat for your device, just set EV_REP in dev->evbit.
All will be
handled by the input system.


1.9 Other event types, handling output events
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


The other event types up to now are:


EV_LED - used for the keyboard LEDs.
EV_SND - used for keyboard beeps.


They are very similar to for example key events, but they go in the other
direction - from the system to the input device driver.
If your input device
driver can handle these events, it has to set the respective bits in evbit,
*and* also the callback routine:


button_dev->event = button_event;

int button_event(struct input_dev *dev, unsigned int type, unsigned int code, int value);
{
if (type == EV_SND && code == SND_BELL) {
outb(value, BUTTON_BELL);
return 0;
}
return -1;
}


This callback routine can be called from an interrupt or a BH (although that

isn't a rule), and thus must not sleep, and must not take too long to finish.




这篇关于Documentation\input\input-programming.txt(输入子系统驱动编写)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/879051

相关文章

如何在Ubuntu上安装NVIDIA显卡驱动? Ubuntu安装英伟达显卡驱动教程

《如何在Ubuntu上安装NVIDIA显卡驱动?Ubuntu安装英伟达显卡驱动教程》Windows系统不同,Linux系统通常不会自动安装专有显卡驱动,今天我们就来看看Ubuntu系统安装英伟达显卡... 对于使用NVIDIA显卡的Ubuntu用户来说,正确安装显卡驱动是获得最佳图形性能的关键。与Windo

使用Java编写一个字符脱敏工具类

《使用Java编写一个字符脱敏工具类》这篇文章主要为大家详细介绍了如何使用Java编写一个字符脱敏工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、字符脱敏工具类2、测试工具类3、测试结果1、字符脱敏工具类import lombok.extern.slf4j.Slf4j

嵌入式Linux之使用设备树驱动GPIO的实现方式

《嵌入式Linux之使用设备树驱动GPIO的实现方式》:本文主要介绍嵌入式Linux之使用设备树驱动GPIO的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录一、设备树配置1.1 添加 pinctrl 节点1.2 添加 LED 设备节点二、编写驱动程序2.1

嵌入式Linux驱动中的异步通知机制详解

《嵌入式Linux驱动中的异步通知机制详解》:本文主要介绍嵌入式Linux驱动中的异步通知机制,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、异步通知的核心概念1. 什么是异步通知2. 异步通知的关键组件二、异步通知的实现原理三、代码示例分析1. 设备结构

usb接口驱动异常问题常用解决方案

《usb接口驱动异常问题常用解决方案》当遇到USB接口驱动异常时,可以通过多种方法来解决,其中主要就包括重装USB控制器、禁用USB选择性暂停设置、更新或安装新的主板驱动等... usb接口驱动异常怎么办,USB接口驱动异常是常见问题,通常由驱动损坏、系统更新冲突、硬件故障或电源管理设置导致。以下是常用解决

Python如何将大TXT文件分割成4KB小文件

《Python如何将大TXT文件分割成4KB小文件》处理大文本文件是程序员经常遇到的挑战,特别是当我们需要把一个几百MB甚至几个GB的TXT文件分割成小块时,下面我们来聊聊如何用Python自动完成这... 目录为什么需要分割TXT文件基础版:按行分割进阶版:精确控制文件大小完美解决方案:支持UTF-8编码

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

基于.NET编写工具类解决JSON乱码问题

《基于.NET编写工具类解决JSON乱码问题》在开发过程中,我们经常会遇到JSON数据处理的问题,尤其是在数据传输和解析过程中,很容易出现编码错误导致的乱码问题,下面我们就来编写一个.NET工具类来解... 目录问题背景核心原理工具类实现使用示例总结在开发过程中,我们经常会遇到jsON数据处理的问题,尤其是

Python3脚本实现Excel与TXT的智能转换

《Python3脚本实现Excel与TXT的智能转换》在数据处理的日常工作中,我们经常需要将Excel中的结构化数据转换为其他格式,本文将使用Python3实现Excel与TXT的智能转换,需要的可以... 目录场景应用:为什么需要这种转换技术解析:代码实现详解核心代码展示改进点说明实战演练:从Excel到

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的