Documentation\input\input-programming.txt(输入子系统驱动编写)

本文主要是介绍Documentation\input\input-programming.txt(输入子系统驱动编写),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


Programming input drivers其实说是翻译,都有点名不副实,基本都是原文,但这篇帮助文档真的很不错。

1. Creating an input device driver  编写一个输入设备驱动
1.0 The simplest example
Here comes a very simple example of an input device driver. The device has
just one button and the button is accessible at i/o port BUTTON_PORT. When

pressed or released a BUTTON_IRQ happens. 这个输入设备只有一个按键,按键被连接到一条中断线上,当按键被按下时,将产生一个中断,内核将检测到这个中断,并对其进行处理。

The driver could look like:


#include <linux/input.h>
#include <linux/module.h>
#include <linux/init.h>

#include <asm/irq.h>
#include <asm/io.h>

static struct input_dev *button_dev;


static irqreturn_t button_interrupt(int irq, void *dummy)
{
input_report_key(button_dev, BTN_0, inb(BUTTON_PORT) & 1);
input_sync(button_dev);
return IRQ_HANDLED;
}

static int __init button_init(void)
{
int error;


if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button", NULL)) {
                printk(KERN_ERR "button.c: Can't allocate irq %d\n", button_irq);
                return -EBUSY;
        }


button_dev = input_allocate_device();
if (!button_dev) {
printk(KERN_ERR "button.c: Not enough memory\n");
error = -ENOMEM;
goto err_free_irq;
}


button_dev->evbit[0] = BIT_MASK(EV_KEY);
button_dev->keybit[BIT_WORD(BTN_0)] = BIT_MASK(BTN_0);


error = input_register_device(button_dev);
if (error) {
printk(KERN_ERR "button.c: Failed to register device\n");
goto err_free_dev;
}


return 0;


 err_free_dev:
input_free_device(button_dev);
 err_free_irq:
free_irq(BUTTON_IRQ, button_interrupt);
return error;
}


static void __exit button_exit(void)
{
        input_unregister_device(button_dev);
free_irq(BUTTON_IRQ, button_interrupt);
}


module_init(button_init);
module_exit(button_exit);


1.1 What the example does
~~~~~~~~~~~~~~~~~~~~~~~~~

First it has to include the <linux/input.h> file, which interfaces to the
input subsystem.
This provides all the definitions needed.

In the _init function, which is called either upon module load or when
booting the kernel, it grabs the required resources (it should also check
for the presence of the device).


Then it allocates a new input device structure with input_allocate_device()
and sets up input bitfields. This way the device driver tells the other
parts of the input systems what it is - what events can be generated or
accepted by this input device.
Our example device can only generate EV_KEY
type events, and from those only BTN_0 event code. Thus we only set these
two bits. We could have used


set_bit(EV_KEY, button_dev.evbit);
set_bit(BTN_0, button_dev.keybit);

as well, but with more than single bits the first approach tends to be
shorter.


Then the example driver registers the input device structure by calling
input_register_device(&button_dev);
This adds the button_dev structure to linked lists of the input driver and
calls device handler modules _connect functions to tell them a new input
device has appeared.
input_register_device() may sleep and therefore must
not be called from an interrupt or with a spinlock held.


While in use, the only used function of the driver is
button_interrupt()
which upon every interrupt from the button checks its state and reports it

via the


input_report_key()
call to the input system. There is no need to check whether the interrupt
routine isn't reporting two same value events (press, press for example) to
the input system, because the input_report_* functions check that
themselves.


Then there is the

input_sync()

call to tell those who receive the events that we've sent a complete report.
This doesn't seem important in the one button case, but is quite important
for for example mouse movement, where you don't want the X and Y values
to be interpreted separately, because that'd result in a different movement.


1.2 dev->open() and dev->close()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In case the driver has to repeatedly poll the device, because it doesn't
have an interrupt coming from it and the polling is too expensive to be done
all the time, or if the device uses a valuable resource (eg. interrupt), it
can use the open and close callback to know when it can stop polling or
release the interrupt and when it must resume polling or grab the interrupt
again. To do that, we would add this to our example driver:

static int button_open(struct input_dev *dev)
{
if (request_irq(BUTTON_IRQ, button_interrupt, 0, "button", NULL)) {
                printk(KERN_ERR "button.c: Can't allocate irq %d\n", button_irq);
                return -EBUSY;
        }


        return 0;
}
static void button_close(struct input_dev *dev)
{
        free_irq(IRQ_AMIGA_VERTB, button_interrupt);
}


static int __init button_init(void)
{
...
button_dev->open = button_open;
button_dev->close = button_close;
...
}

Note that input core keeps track of number of users for the device and
makes sure that dev->open() is called only when the first user connects
to the device and that dev->close() is called when the very last user
disconnects. Calls to both callbacks are serialized.

The open() callback should return a 0 in case of success or any nonzero value
in case of failure. The close() callback (which is void) must always succeed.


1.3 Basic event types
~~~~~~~~~~~~~~~~~~~~~
The most simple event type is EV_KEY, which is used for keys and buttons.
It's reported to the input system via:


input_report_key(struct input_dev *dev, int code, int value)

See linux/input.h for the allowable values of code (from 0 to KEY_MAX).
Value is interpreted as a truth value, ie any nonzero value means key
pressed, zero value means key released.
The input code generates events only
in case the value is different from before.


In addition to EV_KEY, there are two more basic event types: EV_REL and
EV_ABS. They are used for relative and absolute values supplied by the
device.
A relative value may be for example a mouse movement in the X axis.
The mouse reports it as a relative difference from the last position,
because it doesn't have any absolute coordinate system to work in. Absolute
events are namely for joysticks and digitizers - devices that do work in an
absolute coordinate systems.


Having the device report EV_REL buttons is as simple as with EV_KEY, simply  相对坐标
set the corresponding bits and call the

input_report_rel(struct input_dev *dev, int code, int value)


function. Events are generated only for nonzero value.


However EV_ABS requires a little special care. Before calling   绝对坐标有关
input_register_device, you have to fill additional fields in the input_dev
struct for each absolute axis your device has. If our button device had also
the ABS_X axis:


button_dev.absmin[ABS_X] = 0;
button_dev.absmax[ABS_X] = 255;
button_dev.absfuzz[ABS_X] = 4;
button_dev.absflat[ABS_X] = 8;


Or, you can just say:
input_set_abs_params(button_dev, ABS_X, 0, 255, 4, 8);


This setting would be appropriate for a joystick X axis, with the minimum of
0, maximum of 255 (which the joystick *must* be able to reach, no problem if
it sometimes reports more, but it must be able to always reach the min and
max values), with noise in the data up to +- 4, and with a center flat
position of size 8.


If you don't need absfuzz and absflat, you can set them to zero, which mean
that the thing is precise and always returns to exactly the center position
(if it has any).


1.4 BITS_TO_LONGS(), BIT_WORD(), BIT_MASK()
~~~~~~~~~~~~~~~~~~~~~~~~~~

These three macros from bitops.h help some bitfield computations:

BITS_TO_LONGS(x) - returns the length of a bitfield array in longs for
  x bits
BIT_WORD(x) - returns the index in the array in longs for bit x
BIT_MASK(x) - returns the index in a long for bit x


1.5 The id* and name fields
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The dev->name should be set before registering the input device by the input
device driver. It's a string like 'Generic button device' containing a
user friendly name of the device.


The id* fields contain the bus ID (PCI, USB, ...), vendor ID and device ID
of the device. The bus IDs are defined in input.h. The vendor and device ids
are defined in pci_ids.h, usb_ids.h and similar include files. These fields
should be set by the input device driver before registering it.


The idtype field can be used for specific information for the input device
driver.


The id and name fields can be passed to userland via the evdev interface.


1.6 The keycode, keycodemax, keycodesize fields
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
These three fields should be used by input devices that have dense keymaps.
The keycode is an array used to map from scancodes to input system keycodes.
The keycode max should contain the size of the array and keycodesize the
size of each entry in it (in bytes).


Userspace can query and alter current scancode to keycode mappings using
EVIOCGKEYCODE and EVIOCSKEYCODE ioctls on corresponding evdev interface.
When a device has all 3 aforementioned fields filled in, the driver may
rely on kernel's default implementation of setting and querying keycode
mappings.


1.7 dev->getkeycode() and dev->setkeycode()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
getkeycode() and setkeycode() callbacks allow drivers to override default
keycode/keycodesize/keycodemax mapping mechanism provided by input core
and implement sparse keycode maps.


1.8 Key autorepeat
~~~~~~~~~~~~~~~~~~

... is simple. It is handled by the input.c module. Hardware autorepeat is
not used, because it's not present in many devices and even where it is
present, it is broken sometimes (at keyboards: Toshiba notebooks). To enable
autorepeat for your device, just set EV_REP in dev->evbit.
All will be
handled by the input system.


1.9 Other event types, handling output events
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


The other event types up to now are:


EV_LED - used for the keyboard LEDs.
EV_SND - used for keyboard beeps.


They are very similar to for example key events, but they go in the other
direction - from the system to the input device driver.
If your input device
driver can handle these events, it has to set the respective bits in evbit,
*and* also the callback routine:


button_dev->event = button_event;

int button_event(struct input_dev *dev, unsigned int type, unsigned int code, int value);
{
if (type == EV_SND && code == SND_BELL) {
outb(value, BUTTON_BELL);
return 0;
}
return -1;
}


This callback routine can be called from an interrupt or a BH (although that

isn't a rule), and thus must not sleep, and must not take too long to finish.




这篇关于Documentation\input\input-programming.txt(输入子系统驱动编写)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/879051

相关文章

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

基于Python编写自动化邮件发送程序(进阶版)

《基于Python编写自动化邮件发送程序(进阶版)》在数字化时代,自动化邮件发送功能已成为企业和个人提升工作效率的重要工具,本文将使用Python编写一个简单的自动化邮件发送程序,希望对大家有所帮助... 目录理解SMTP协议基础配置开发环境构建邮件发送函数核心逻辑实现完整发送流程添加附件支持功能实现htm

Java实现TXT文件导入功能的详细步骤

《Java实现TXT文件导入功能的详细步骤》在实际开发中,很多应用场景需要将用户上传的TXT文件进行解析,并将文件中的数据导入到数据库或其他存储系统中,本文将演示如何用Java实现一个基本的TXT文件... 目录前言1. 项目需求分析2. 示例文件格式3. 实现步骤3.1. 准备数据库(假设使用 mysql

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

Linux之platform平台设备驱动详解

《Linux之platform平台设备驱动详解》Linux设备驱动模型中,Platform总线作为虚拟总线统一管理无物理总线依赖的嵌入式设备,通过platform_driver和platform_de... 目录platform驱动注册platform设备注册设备树Platform驱动和设备的关系总结在 l

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

HTML input 标签示例详解

《HTMLinput标签示例详解》input标签主要用于接收用户的输入,随type属性值的不同,变换其具体功能,本文通过实例图文并茂的形式给大家介绍HTMLinput标签,感兴趣的朋友一... 目录通用属性输入框单行文本输入框 text密码输入框 password数字输入框 number电子邮件输入编程框

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可