使用RAKE简单实现关键词提取

2024-04-06 03:04

本文主要是介绍使用RAKE简单实现关键词提取,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 算法说明
  • 算法步骤
    • 提取可能的关键词
      • spacy处理文本
      • 注意:关键词不是token
    • 对关键词所含的每个token进行评分
    • 对于关键词进行评分计算和排序返回
  • 算法分析

算法说明

RAKE的全称叫做Rapid Automatic Keyword Extraction,是一个用来自动从文章中抽取关键词的简单的算法。它的思想是对文本进行切分得到可能的关键词,对于关键词中所含的token根据频率等角度进行评分,最后对于关键词进行评分返回评分最高的作为选择的关键词。

算法步骤

提取可能的关键词

第一步是需要把句子切分成为可能的关键词。一般使用停用词和标点进行切分。认为停用词和标点之间的内容就是可能的关键词。

spacy处理文本

在处理文本的时候,我们手动处理的效率和正确率都不一定准确,这个时候比较好的方式就是可以借用spacy库来处理。

import spacy
sentence = "today is a sunny day!"
nlp = spacy.load("en_core_web_sm", disable=['parse', 'ner'])
doc = nlp(sentence)

spacy会帮助我们对于句子进行tokenization, 并且有对于每个token,可以使用token.is_stop, token.is_punct的方式来去掉停用词或者标点符号。

想要查看包含的停用词有哪些?

stop_words = nlp.Defaults.stop_words
stop_words

注意:关键词不是token

我们用token处理但是不代表关键词就是token。关键词可能是多个token组成的

对关键词所含的每个token进行评分

第二步就是对于第一步抽取出来的每个关键词中包含的token进行评分,评分的公式为:

score ( t ) = deg ( t ) freq ( t ) \text{score}(t) = \frac{\text{deg}(t)}{\text{freq}(t)} score(t)=freq(t)deg(t)

其中freq(t)指的是某个token在文档中出现的总的次数,deg(t)指的是这个tokne和其他的token一起出现的次数。简单的解释就是,如果一共有两个关键词
key1和key2
key1中有token1, token2, token3, token4
key2中有token2, token6, token5
那么和token1一起出现的词的个数就是4个,和token2一起出现的词的个数就是4+3 = 7个

对于关键词进行评分计算和排序返回

在计算得到上述的评分之后,我们可以发现,其实这个评分是针对于token的,但是我们想要的其实是对于关键词的评分,计算的方式是将每个关键词中的token的得分进行加和就能得到最后的关键词的评分。最后将这个评分进行排序,选出评分较高的作为关键词。

算法分析

(1)优势
相比于TextRank的方法来说,RAKE的计算更快
Rose S, Engel D, Cramer N, et al. Automatic keyword extraction from individual documents[J]. Text mining: applications and theory, 2010: 1-20.

(2)劣势
当文本的停用词不全面的时候,输出的词可能是非常长并且不相关的
M. G. Thushara, T. Mownika and R. Mangamuru, “A Comparative Study on different Keyword Extraction Algorithms,” 2019 3rd International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 2019, pp. 969-973, doi: 10.1109/ICCMC.2019.8819630.

这篇关于使用RAKE简单实现关键词提取的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/878844

相关文章

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

C#下Newtonsoft.Json的具体使用

《C#下Newtonsoft.Json的具体使用》Newtonsoft.Json是一个非常流行的C#JSON序列化和反序列化库,它可以方便地将C#对象转换为JSON格式,或者将JSON数据解析为C#对... 目录安装 Newtonsoft.json基本用法1. 序列化 C# 对象为 JSON2. 反序列化

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方

MySQL中On duplicate key update的实现示例

《MySQL中Onduplicatekeyupdate的实现示例》ONDUPLICATEKEYUPDATE是一种MySQL的语法,它在插入新数据时,如果遇到唯一键冲突,则会执行更新操作,而不是抛... 目录1/ ON DUPLICATE KEY UPDATE的简介2/ ON DUPLICATE KEY UP

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的