序列化案例实操(统计每一个手机号耗费的总上行流量、总下行流量、总流量)

本文主要是介绍序列化案例实操(统计每一个手机号耗费的总上行流量、总下行流量、总流量),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 序列化概述
  • 自定义bean对象实现序列化接口(Writable)
  • 案例需求
  • 编写MapReduce程序
  • 运行结果


序列化概述

序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁盘(持久化)和网络传输。
反序列化就是将收到字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换成内存中的对象。

自定义bean对象实现序列化接口(Writable)

在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在Hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口。
具体实现bean对象序列化步骤如下7步:
(1)必须实现Writable接口
(2)反序列化时,需要反射调用空参构造函数,所以必须有空参构造

public FlowBean() {super();
}

(3)重写序列化方法

@Override
public void write(DataOutput out) throws IOException {out.writeLong(upFlow);out.writeLong(downFlow);out.writeLong(sumFlow);
}

(4)重写反序列化方法

@Override
public void readFields(DataInput in) throws IOException {upFlow = in.readLong();downFlow = in.readLong();sumFlow = in.readLong();
}

(5)注意反序列化的顺序和序列化的顺序完全一致
(6)要想把结果显示在文件中,需要重写toString(),可用"\t"分开,方便后续用。
(7)如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce框中的Shuffle过程要求对key必须能排序。

@Override
public int compareTo(FlowBean o) {// 倒序排列,从大到小return this.sumFlow > o.getSumFlow() ? -1 : 1;
}

案例需求

统计每一个手机号耗费的总上行流量、总下行流量、总流量
输入总数据:
在这里插入图片描述
输入数据格式:
7 13560436666 120.196.100.99 1116 954 200
id 手机号码 网络ip 上行流量 下行流量 网络状态码
期望输出数据格式:
13560436666 1116 954 2070
手机号码 上行流量 下行流量 总流量

编写MapReduce程序

在这里插入图片描述
FlowBean:

package com.atxiaoyu.xuliehua;import org.apache.hadoop.io.Writable;import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;public class FlowBean implements Writable {private long upFlow; //上行流量private long downFlow; //下行流量private long sumFlow; //总流量//空参构造public FlowBean() {}public long getUpFlow() {return upFlow;}public void setUpFlow(long upFlow) {this.upFlow = upFlow;}public long getDownFlow() {return downFlow;}public void setDownFlow(long downFlow) {this.downFlow = downFlow;}public long getSumFlow() {return sumFlow;}public void setSumFlow(long sumFlow) {this.sumFlow = sumFlow;}public void setSumFlow() {this.sumFlow = this.upFlow+this.downFlow;}@Overridepublic void write(DataOutput out) throws IOException {out.writeLong(upFlow);out.writeLong(downFlow);out.writeLong(sumFlow);}@Overridepublic void readFields(DataInput in) throws IOException {this.upFlow=in.readLong();this.downFlow=in.readLong();this.sumFlow=in.readLong();}@Overridepublic String toString() {return upFlow+"\t"+downFlow+"\t"+sumFlow;}
}

FlowMapper:

package com.atxiaoyu.xuliehua;import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;public class FlowMapper extends Mapper<LongWritable, Text,Text,FlowBean> {private  Text outK=new Text();private  FlowBean outV=new FlowBean();@Overrideprotected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {// 获取一行String line=value.toString();//切割String[] split=line.split("\t");//抓取想要的数据String phone=split[1];String up=split[split.length-3]; //上行流量String down=split[split.length-2]; //下行流量//封装outK.set(phone);outV.setUpFlow(Long.parseLong(up));outV.setDownFlow(Long.parseLong(down));outV.setSumFlow();// 写出context.write(outK,outV);}
}

FlowReducer:

package com.atxiaoyu.xuliehua;import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;public class FlowReducer extends Reducer<Text,FlowBean,Text,FlowBean> {private  FlowBean outV=new FlowBean();@Overrideprotected void reduce(Text key, Iterable<FlowBean> values, Context context) throws IOException, InterruptedException {//遍历集合累加值long totalUp=0;long totalDown=0;for (FlowBean value : values) {totalUp=totalUp+value.getUpFlow();totalDown=totalUp+value.getDownFlow();//封装outK,outVoutV.setUpFlow(totalUp);outV.setDownFlow(totalDown);outV.setSumFlow();//写出context.write(key,outV);}}
}

FlowDriver:

package com.atxiaoyu.xuliehua;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.kerby.config.Conf;import java.io.IOException;public class FlowDriver {public static void main(String[] args) throws InterruptedException, IOException, ClassNotFoundException {Configuration conf = new Configuration();//1 获取jobJob job = Job.getInstance(conf);//2 设置jar包路径job.setJarByClass(FlowDriver.class);// 3 管理mapper和reducerjob.setMapperClass(FlowMapper.class);job.setReducerClass(FlowReducer.class);// 4 设置map输出的kv类型job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(FlowBean.class);//5 设置最终输出的kv类型job.setOutputKeyClass(Text.class);job.setOutputValueClass(FlowBean.class);//6 设置输入路径和输出路径FileInputFormat.setInputPaths(job, new Path("D:\\input"));FileOutputFormat.setOutputPath(job, new Path("D:\\output"));//7 提交jobboolean result = job.waitForCompletion(true);System.exit(result ? 0 : 1);}
}

运行结果

在这里插入图片描述

在这里插入图片描述
与我们设想的输出结果一致。

这篇关于序列化案例实操(统计每一个手机号耗费的总上行流量、总下行流量、总流量)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/878692

相关文章

六个案例搞懂mysql间隙锁

《六个案例搞懂mysql间隙锁》MySQL中的间隙是指索引中两个索引键之间的空间,间隙锁用于防止范围查询期间的幻读,本文主要介绍了六个案例搞懂mysql间隙锁,具有一定的参考价值,感兴趣的可以了解一下... 目录概念解释间隙锁详解间隙锁触发条件间隙锁加锁规则案例演示案例一:唯一索引等值锁定存在的数据案例二:

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co

RedisTemplate默认序列化方式显示中文乱码的解决

《RedisTemplate默认序列化方式显示中文乱码的解决》本文主要介绍了SpringDataRedis默认使用JdkSerializationRedisSerializer导致数据乱码,文中通过示... 目录1. 问题原因2. 解决方案3. 配置类示例4. 配置说明5. 使用示例6. 验证存储结果7.

MySQL 表的内外连接案例详解

《MySQL表的内外连接案例详解》本文给大家介绍MySQL表的内外连接,结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录表的内外连接(重点)内连接外连接表的内外连接(重点)内连接内连接实际上就是利用where子句对两种表形成的笛卡儿积进行筛选,我

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

SpringBoot项目中Redis存储Session对象序列化处理

《SpringBoot项目中Redis存储Session对象序列化处理》在SpringBoot项目中使用Redis存储Session时,对象的序列化和反序列化是关键步骤,下面我们就来讲讲如何在Spri... 目录一、为什么需要序列化处理二、Spring Boot 集成 Redis 存储 Session2.1