【T5中的激活函数】GLU Variants Improve Transformer

2024-04-05 07:20

本文主要是介绍【T5中的激活函数】GLU Variants Improve Transformer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【mT5中的激活函数】GLU Variants Improve Transformer

  • 论文信息
    • 阅读评价
  • Abstract
  • Introduction
  • Gated Linear Units (GLU) and Variants
  • Experiments on Text-to-Text Transfer Transformer (T5)
  • Conclusion

论文信息

名称内容
论文标题GLU Variants Improve Transformer
论文地址https://arxiv.org/abs/2002.05202
发表时间2020-02-12
研究领域NLP, 激活函数, FNN
提出方法GEGLU(激活函数)

阅读评价

  论文在各种激活函数之间做了对比实验,探究应用不同激活函数的FNN对T5模型的影响。最终GEGLU效果最好。

  个人感受:只能说太细了!真是不给其他人一点活路,连激活函数他都要做个实验取个最好的。


  以下是对论文每个部分的简单介绍。

Abstract

  门控线性单元(Gated Linear Units, GLU)由两个线性投影的分量乘积组成,其中一个投影首先通过sigmoid函数。对于GLU中的激活函数,也是调参中的一个点。论文在FFN中应用了GLU的一些变体,发现其中一些变体的质量优于通常使用的ReLUGELU激活。

Introduction

  介绍了四种基于不同激活函数的FFN。

  Transformer 论文中提出的前馈网络(Feed-Forward Network, FNN)是一个两层的全连接神经网络,它在 Transformer 模型中起到了重要的作用。这个网络的结构是:

F F N ( x , W 1 , W 2 , b 1 , b 2 ) = m a x ( 0 , x W 1 + b 1 ) W 2 + b 2 FFN(x, W_1, W_2, b_1, b_2) = max(0, xW_1 + b_1)W_2 + b_2 FFN(x,W1,W2,b1,b2)=max(0,xW1+b1)W2+b2

  其中, x x x 是输入, W 1 W_1 W1 W 2 W_2 W2 是权重矩阵, b 1 b_1 b1 b 2 b_2 b2 是偏置向量。这个公式首先通过一个线性变换 x W 1 + b 1 xW_1 + b_1 xW1+b1,然后通过ReLU激活函数,最后再通过另一个线性变换 W 2 W_2 W2 和偏置 b 2 b_2 b2

  在 T5 论文中,作者对前馈网络进行了一些调整,取消了偏置项。这样做的目的是为了简化模型和提高训练效率。调整后的前馈网络结构是:

F F N R e L U ( x , W 1 , W 2 ) = m a x ( 0 , x W 1 ) W 2 FFN_{ReLU}(x, W_1, W_2) = max(0, xW_1)W_2 FFNReLU(x,W1,W2)=max(0,xW1)W2

  这个公式中,去掉了偏置项 b 1 b_1 b1 b 2 b_2 b2,只保留了ReLU激活函数和两个权重矩阵。

  除了ReLU激活函数,还有一些其他的激活函数被用于前馈网络中。例如,基于高斯误差函数的激活函数GELU可以用于前馈网络,其结构是:

F F N G E L U ( x , W 1 , W 2 ) = G E L U ( x W 1 ) W 2 FFN_{GELU}(x, W_1, W_2) = GELU(xW_1)W_2 FFNGELU(x,W1,W2)=GELU(xW1)W2

  GELU激活函数可以更好地模拟神经网络的随机正则化行为,从而提高模型的性能。

  另一个被用于前馈网络的激活函数是SwishSwish激活函数是一个自门控的激活函数,它可以自动调节每个神经元的输出。基于Swish激活函数的前馈网络结构是:
F F N S w i s h ( x , W 1 , W 2 ) = S w i s h ( x W 1 ) W 2 FFN_{Swish}(x, W_1, W_2) = Swish(xW_1)W_2 FFNSwish(x,W1,W2)=Swish(xW1)W2

  Swish激活函数在某些情况下可以提高神经网络的性能,因此在设计前馈网络时,可以根据具体的应用场景选择合适的激活函数。

【注】为什么FNN里面要有激活函数?
————————————
答:1)提供非线性拟合能力,没有激活函数的模型只是线性层的累加。2)部分激活函数如ReLU能够缓解梯度消失问题,加快模型速度。

Gated Linear Units (GLU) and Variants

  GLU的公式为:

G L U ( x , W , V , b , c ) = σ ( x W + b ) ⊗ ( x V + c ) GLU(x, W, V, b, c) = σ(xW + b) ⊗ (xV + c) GLU(x,W,V,b,c)=σ(xW+b)(xV+c)

  在GLU的基础上,取消激活函数,称之为BilinearBilinear公式为:

B i l i n e a r ( x , W , V , b , c ) = ( x W + b ) ⊗ ( x V + c ) Bilinear(x, W, V, b, c) = (xW + b) ⊗ (xV + c) Bilinear(x,W,V,b,c)=(xW+b)(xV+c)

  因此在GLU的基础上,作者认为可以产生以下变体:

R e G L U ( x , W , V , b , c ) = m a x ( 0 , x W + b ) ⊗ ( x V + c ) G E G L U ( x , W , V , b , c ) = G E L U ( x W + b ) ⊗ ( x V + c ) S w i G L U ( x , W , V , b , c , β ) = S w i s h β ( x W + b ) ⊗ ( x V + c ) ReGLU(x, W, V, b, c) = max(0, xW + b) ⊗ (xV + c) \\ GEGLU(x, W, V, b, c) = GELU(xW + b) ⊗ (xV + c) \\ SwiGLU(x, W, V, b, c, β) = Swishβ(xW + b) ⊗ (xV + c) ReGLU(x,W,V,b,c)=max(0,xW+b)(xV+c)GEGLU(x,W,V,b,c)=GELU(xW+b)(xV+c)SwiGLU(x,W,V,b,c,β)=Swishβ(xW+b)(xV+c)

  基于上述的激活函数,产生以下FNN变体:

F F N G L U ( x , W , V , W 2 ) = ( σ ( x W ) ⊗ x V ) W 2 F F N B i l i n e a r ( x , W , V , W 2 ) = ( x W ⊗ x V ) W 2 F F N R e G L U ( x , W , V , W 2 ) = ( m a x ( 0 , x W ) ⊗ x V ) W 2 F F N G E G L U ( x , W , V , W 2 ) = ( G E L U ( x W ) ⊗ x V ) W 2 F F N S w i G L U ( x , W , V , W 2 ) = ( S w i s h 1 ( x W ) ⊗ x V ) W 2 FFN_{GLU}(x, W, V, W_2) = (σ(xW ) ⊗ xV )W_2\\ FFN_{Bilinear}(x, W, V, W_2) = (xW ⊗ xV )W_2\\ FFN_{ReGLU}(x, W, V, W_2) = (max(0, xW ) ⊗ xV )W_2\\ FFN_{GEGLU}(x, W, V, W_2) = (GELU(xW ) ⊗ xV )W_2\\ FFN_{SwiGLU}(x, W, V, W_2) = (Swish_1(xW ) ⊗ xV )W_2 FFNGLU(x,W,V,W2)=(σ(xW)xV)W2FFNBilinear(x,W,V,W2)=(xWxV)W2FFNReGLU(x,W,V,W2)=(max(0,xW)xV)W2FFNGEGLU(x,W,V,W2)=(GELU(xW)xV)W2FFNSwiGLU(x,W,V,W2)=(Swish1(xW)xV)W2

Experiments on Text-to-Text Transfer Transformer (T5)

在这里插入图片描述

图1 基于不同FNN的T5模型在段落填充任务上的困惑度

  如图1,GEGLUSwiGLU表现最好。

在这里插入图片描述

图2 基于不同FNN的T5模型在GLUE任务上的结果

  如图2,GLU家族表现最好。

在这里插入图片描述

图3 基于不同FNN的T5模型在SuperGLUE任务上的结果

  如图3,GLU家族表现最好。

Conclusion

【注】建议读下这部分的原文,乐死。以下是原段落:

We have extended the GLU family of layers and proposed their use in Transformer. In a transfer-learning setup, the new variants seem to produce better perplexities for the de-noising objective used in pre-training, as well as better results on many downstream language-understanding tasks. These architectures are simple to implement, and have no apparent computational drawbacks. We offer no explanation as to why these architectures seem to work; we attribute their success, as all else, to divine benevolence(上帝的仁慈).

这篇关于【T5中的激活函数】GLU Variants Improve Transformer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877964

相关文章

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Python Excel 通用筛选函数的实现

《PythonExcel通用筛选函数的实现》本文主要介绍了PythonExcel通用筛选函数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录案例目的示例数据假定数据来源是字典优化:通用CSV数据处理函数使用说明使用示例注意事项案例目的第一

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N