【T5中的激活函数】GLU Variants Improve Transformer

2024-04-05 07:20

本文主要是介绍【T5中的激活函数】GLU Variants Improve Transformer,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【mT5中的激活函数】GLU Variants Improve Transformer

  • 论文信息
    • 阅读评价
  • Abstract
  • Introduction
  • Gated Linear Units (GLU) and Variants
  • Experiments on Text-to-Text Transfer Transformer (T5)
  • Conclusion

论文信息

名称内容
论文标题GLU Variants Improve Transformer
论文地址https://arxiv.org/abs/2002.05202
发表时间2020-02-12
研究领域NLP, 激活函数, FNN
提出方法GEGLU(激活函数)

阅读评价

  论文在各种激活函数之间做了对比实验,探究应用不同激活函数的FNN对T5模型的影响。最终GEGLU效果最好。

  个人感受:只能说太细了!真是不给其他人一点活路,连激活函数他都要做个实验取个最好的。


  以下是对论文每个部分的简单介绍。

Abstract

  门控线性单元(Gated Linear Units, GLU)由两个线性投影的分量乘积组成,其中一个投影首先通过sigmoid函数。对于GLU中的激活函数,也是调参中的一个点。论文在FFN中应用了GLU的一些变体,发现其中一些变体的质量优于通常使用的ReLUGELU激活。

Introduction

  介绍了四种基于不同激活函数的FFN。

  Transformer 论文中提出的前馈网络(Feed-Forward Network, FNN)是一个两层的全连接神经网络,它在 Transformer 模型中起到了重要的作用。这个网络的结构是:

F F N ( x , W 1 , W 2 , b 1 , b 2 ) = m a x ( 0 , x W 1 + b 1 ) W 2 + b 2 FFN(x, W_1, W_2, b_1, b_2) = max(0, xW_1 + b_1)W_2 + b_2 FFN(x,W1,W2,b1,b2)=max(0,xW1+b1)W2+b2

  其中, x x x 是输入, W 1 W_1 W1 W 2 W_2 W2 是权重矩阵, b 1 b_1 b1 b 2 b_2 b2 是偏置向量。这个公式首先通过一个线性变换 x W 1 + b 1 xW_1 + b_1 xW1+b1,然后通过ReLU激活函数,最后再通过另一个线性变换 W 2 W_2 W2 和偏置 b 2 b_2 b2

  在 T5 论文中,作者对前馈网络进行了一些调整,取消了偏置项。这样做的目的是为了简化模型和提高训练效率。调整后的前馈网络结构是:

F F N R e L U ( x , W 1 , W 2 ) = m a x ( 0 , x W 1 ) W 2 FFN_{ReLU}(x, W_1, W_2) = max(0, xW_1)W_2 FFNReLU(x,W1,W2)=max(0,xW1)W2

  这个公式中,去掉了偏置项 b 1 b_1 b1 b 2 b_2 b2,只保留了ReLU激活函数和两个权重矩阵。

  除了ReLU激活函数,还有一些其他的激活函数被用于前馈网络中。例如,基于高斯误差函数的激活函数GELU可以用于前馈网络,其结构是:

F F N G E L U ( x , W 1 , W 2 ) = G E L U ( x W 1 ) W 2 FFN_{GELU}(x, W_1, W_2) = GELU(xW_1)W_2 FFNGELU(x,W1,W2)=GELU(xW1)W2

  GELU激活函数可以更好地模拟神经网络的随机正则化行为,从而提高模型的性能。

  另一个被用于前馈网络的激活函数是SwishSwish激活函数是一个自门控的激活函数,它可以自动调节每个神经元的输出。基于Swish激活函数的前馈网络结构是:
F F N S w i s h ( x , W 1 , W 2 ) = S w i s h ( x W 1 ) W 2 FFN_{Swish}(x, W_1, W_2) = Swish(xW_1)W_2 FFNSwish(x,W1,W2)=Swish(xW1)W2

  Swish激活函数在某些情况下可以提高神经网络的性能,因此在设计前馈网络时,可以根据具体的应用场景选择合适的激活函数。

【注】为什么FNN里面要有激活函数?
————————————
答:1)提供非线性拟合能力,没有激活函数的模型只是线性层的累加。2)部分激活函数如ReLU能够缓解梯度消失问题,加快模型速度。

Gated Linear Units (GLU) and Variants

  GLU的公式为:

G L U ( x , W , V , b , c ) = σ ( x W + b ) ⊗ ( x V + c ) GLU(x, W, V, b, c) = σ(xW + b) ⊗ (xV + c) GLU(x,W,V,b,c)=σ(xW+b)(xV+c)

  在GLU的基础上,取消激活函数,称之为BilinearBilinear公式为:

B i l i n e a r ( x , W , V , b , c ) = ( x W + b ) ⊗ ( x V + c ) Bilinear(x, W, V, b, c) = (xW + b) ⊗ (xV + c) Bilinear(x,W,V,b,c)=(xW+b)(xV+c)

  因此在GLU的基础上,作者认为可以产生以下变体:

R e G L U ( x , W , V , b , c ) = m a x ( 0 , x W + b ) ⊗ ( x V + c ) G E G L U ( x , W , V , b , c ) = G E L U ( x W + b ) ⊗ ( x V + c ) S w i G L U ( x , W , V , b , c , β ) = S w i s h β ( x W + b ) ⊗ ( x V + c ) ReGLU(x, W, V, b, c) = max(0, xW + b) ⊗ (xV + c) \\ GEGLU(x, W, V, b, c) = GELU(xW + b) ⊗ (xV + c) \\ SwiGLU(x, W, V, b, c, β) = Swishβ(xW + b) ⊗ (xV + c) ReGLU(x,W,V,b,c)=max(0,xW+b)(xV+c)GEGLU(x,W,V,b,c)=GELU(xW+b)(xV+c)SwiGLU(x,W,V,b,c,β)=Swishβ(xW+b)(xV+c)

  基于上述的激活函数,产生以下FNN变体:

F F N G L U ( x , W , V , W 2 ) = ( σ ( x W ) ⊗ x V ) W 2 F F N B i l i n e a r ( x , W , V , W 2 ) = ( x W ⊗ x V ) W 2 F F N R e G L U ( x , W , V , W 2 ) = ( m a x ( 0 , x W ) ⊗ x V ) W 2 F F N G E G L U ( x , W , V , W 2 ) = ( G E L U ( x W ) ⊗ x V ) W 2 F F N S w i G L U ( x , W , V , W 2 ) = ( S w i s h 1 ( x W ) ⊗ x V ) W 2 FFN_{GLU}(x, W, V, W_2) = (σ(xW ) ⊗ xV )W_2\\ FFN_{Bilinear}(x, W, V, W_2) = (xW ⊗ xV )W_2\\ FFN_{ReGLU}(x, W, V, W_2) = (max(0, xW ) ⊗ xV )W_2\\ FFN_{GEGLU}(x, W, V, W_2) = (GELU(xW ) ⊗ xV )W_2\\ FFN_{SwiGLU}(x, W, V, W_2) = (Swish_1(xW ) ⊗ xV )W_2 FFNGLU(x,W,V,W2)=(σ(xW)xV)W2FFNBilinear(x,W,V,W2)=(xWxV)W2FFNReGLU(x,W,V,W2)=(max(0,xW)xV)W2FFNGEGLU(x,W,V,W2)=(GELU(xW)xV)W2FFNSwiGLU(x,W,V,W2)=(Swish1(xW)xV)W2

Experiments on Text-to-Text Transfer Transformer (T5)

在这里插入图片描述

图1 基于不同FNN的T5模型在段落填充任务上的困惑度

  如图1,GEGLUSwiGLU表现最好。

在这里插入图片描述

图2 基于不同FNN的T5模型在GLUE任务上的结果

  如图2,GLU家族表现最好。

在这里插入图片描述

图3 基于不同FNN的T5模型在SuperGLUE任务上的结果

  如图3,GLU家族表现最好。

Conclusion

【注】建议读下这部分的原文,乐死。以下是原段落:

We have extended the GLU family of layers and proposed their use in Transformer. In a transfer-learning setup, the new variants seem to produce better perplexities for the de-noising objective used in pre-training, as well as better results on many downstream language-understanding tasks. These architectures are simple to implement, and have no apparent computational drawbacks. We offer no explanation as to why these architectures seem to work; we attribute their success, as all else, to divine benevolence(上帝的仁慈).

这篇关于【T5中的激活函数】GLU Variants Improve Transformer的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877964

相关文章

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

MySQL 字符串截取函数及用法详解

《MySQL字符串截取函数及用法详解》在MySQL中,字符串截取是常见的操作,主要用于从字符串中提取特定部分,MySQL提供了多种函数来实现这一功能,包括LEFT()、RIGHT()、SUBST... 目录mysql 字符串截取函数详解RIGHT(str, length):从右侧截取指定长度的字符SUBST

Kotlin运算符重载函数及作用场景

《Kotlin运算符重载函数及作用场景》在Kotlin里,运算符重载函数允许为自定义类型重新定义现有的运算符(如+-…)行为,从而让自定义类型能像内置类型那样使用运算符,本文给大家介绍Kotlin运算... 目录基本语法作用场景类对象数据类型接口注意事项在 Kotlin 里,运算符重载函数允许为自定义类型重