Python人工智能应用---中文分词词频统计

2024-04-05 06:44

本文主要是介绍Python人工智能应用---中文分词词频统计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.中文分词

2.循环分别处理列表

(1)分析

(2)代码解决

3.词袋模型的构建

(1)分析需求

(2)处理分析

1.先实现字符串的连接

2.字符串放到新的列表里面

4.提取高频词语

(1)STEP1. 导入模块

(2)STEP2. 创建CountVectorizer对象

(3)STEP3. 使用fit_transform()函数构造词袋模型

(4)STEP4. 使用get_feature_names()提取关键词


1.中文分词

jieba模块是处理中文分词还不错的一种方法,我们需要在自己的终端进行导入;

jieba模块里面含有许多的函数,我们使用lcut()函数,这个函数的参数就是我们要处理的文本内容,把字符串传进去以后,函数会返回列表;

分词上面的英文是jieba模块创建分词模型的过程,

模型创建成功之后,就会以列表的形式返回

2.循环分别处理列表

(1)分析

我们前面已经把评价的内容以列表的形式放到了data这个变量里面,我们进行中文分词的时候,需要取出每个评论进行分词统计,而评论是data里面的小列表的第一个元素,我们可以使用for循环,对里面的每个列表的第一个元素---评论进行分词处理;

(2)代码解决

 这个地方文件打开的时候会遇到各种问题,我们可以查阅资料解决,例如编码的方式,范围,忽略,转义字符等等;

open里面的文件路径一定是自己的电脑的文件路径,不可以直接进行复制;

# 导入csv模块
import csv# 使用open()函数打开数据集
file = open("C:\\Users\\32585\\Desktop\\yequ\\TVComments.csv","r",encoding='gb18030',errors="ignore")
# 使用csv.reader()函数读取数据集
reader = csv.reader(file)# 创建一个空列表data
data = []# 使用for循环遍历reader,将遍历的数据存储到变量info中
for info in reader:# 使用append()函数,将info逐一添加到data列表中data.append(info)# TODO 导入jieba模块
import jieba# TODO 使用for循环遍历data列表
for row in data:# TODO 获取具体的评价内容,并赋值给变量texttext=row[0]# TODO 使用jieba.lcut()将text进行分词,并把结果赋值给retret=jieba.lcut(text)# 输出ret进行查看print(ret)

因为文件容量比较大,所以生成的分词比较多,如图所示:

3.词袋模型的构建

(1)分析需求

经过jieba,lcut函数的处理之后,就生成了一系列的字符串列表:有多少条评论,就会生成多少条评论,但是我们后续的词袋模型只能传进去一个字符串,所以我们要把生成的诸多字符串转换成一个字符串;

(2)处理分析

我们的解决方案就是把每个列表里面的字符串使用空格进行合并,添加到一个新的列表里面;

下面是具体的实现:

1.先实现字符串的连接

把小的列表里面的内容使用空格合并成为一个字符串,我们这里可以使用join()函数:

按照上面的示例,在这个题上面,具体的代码就只需要在原来的基础上面进行修改就可以了:


2.字符串放到新的列表里面

4.提取高频词语

机器学习模块sklearn可以帮助我们处理这个问题,这个模块里面含有许多的函数,可以直接进行评论的提取以及高频词的统计;sklearn不是内置的模块,需要我们在本地进行安装

(1)STEP1. 导入模块

我们需使用
from...import...,从 sklearn.feature_extraction.text 模块中导入 CountVectorizer 类。


(2)STEP2. 创建CountVectorizer对象

导入模块后,需要创建一个CountVectorizer对象,这样才能调用CountVectorizer类里面的某个方法或属性。

由于我们只想从评价中筛选出前15个出现频率最高的词语,所以传入了max_features=15。

# 从sklearn.feature_extraction.text中导入CountVectorizer
from sklearn.feature_extraction.text import CountVectorizer# 创建CountVectorizer对象,并存储在vect中
vect = CountVectorizer(max_features=15)


(3)STEP3. 使用fit_transform()函数构造词袋模型

X = vect.fit_transform(word)

这个里面的word就是我们前面新建的列表

这个里面的生成结果全部是数字,我们来解释一下:

(4)STEP4. 使用get_feature_names()提取关键词

# TODO 对vect对象使用get_feature_names(),并将结果赋值给keywords
keywords = vect.get_feature_names()# 输出keywords
print(keywords)

最后的返回结果就是高频词:

这篇关于Python人工智能应用---中文分词词频统计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877883

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达