Python人工智能应用---中文分词词频统计

2024-04-05 06:44

本文主要是介绍Python人工智能应用---中文分词词频统计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.中文分词

2.循环分别处理列表

(1)分析

(2)代码解决

3.词袋模型的构建

(1)分析需求

(2)处理分析

1.先实现字符串的连接

2.字符串放到新的列表里面

4.提取高频词语

(1)STEP1. 导入模块

(2)STEP2. 创建CountVectorizer对象

(3)STEP3. 使用fit_transform()函数构造词袋模型

(4)STEP4. 使用get_feature_names()提取关键词


1.中文分词

jieba模块是处理中文分词还不错的一种方法,我们需要在自己的终端进行导入;

jieba模块里面含有许多的函数,我们使用lcut()函数,这个函数的参数就是我们要处理的文本内容,把字符串传进去以后,函数会返回列表;

分词上面的英文是jieba模块创建分词模型的过程,

模型创建成功之后,就会以列表的形式返回

2.循环分别处理列表

(1)分析

我们前面已经把评价的内容以列表的形式放到了data这个变量里面,我们进行中文分词的时候,需要取出每个评论进行分词统计,而评论是data里面的小列表的第一个元素,我们可以使用for循环,对里面的每个列表的第一个元素---评论进行分词处理;

(2)代码解决

 这个地方文件打开的时候会遇到各种问题,我们可以查阅资料解决,例如编码的方式,范围,忽略,转义字符等等;

open里面的文件路径一定是自己的电脑的文件路径,不可以直接进行复制;

# 导入csv模块
import csv# 使用open()函数打开数据集
file = open("C:\\Users\\32585\\Desktop\\yequ\\TVComments.csv","r",encoding='gb18030',errors="ignore")
# 使用csv.reader()函数读取数据集
reader = csv.reader(file)# 创建一个空列表data
data = []# 使用for循环遍历reader,将遍历的数据存储到变量info中
for info in reader:# 使用append()函数,将info逐一添加到data列表中data.append(info)# TODO 导入jieba模块
import jieba# TODO 使用for循环遍历data列表
for row in data:# TODO 获取具体的评价内容,并赋值给变量texttext=row[0]# TODO 使用jieba.lcut()将text进行分词,并把结果赋值给retret=jieba.lcut(text)# 输出ret进行查看print(ret)

因为文件容量比较大,所以生成的分词比较多,如图所示:

3.词袋模型的构建

(1)分析需求

经过jieba,lcut函数的处理之后,就生成了一系列的字符串列表:有多少条评论,就会生成多少条评论,但是我们后续的词袋模型只能传进去一个字符串,所以我们要把生成的诸多字符串转换成一个字符串;

(2)处理分析

我们的解决方案就是把每个列表里面的字符串使用空格进行合并,添加到一个新的列表里面;

下面是具体的实现:

1.先实现字符串的连接

把小的列表里面的内容使用空格合并成为一个字符串,我们这里可以使用join()函数:

按照上面的示例,在这个题上面,具体的代码就只需要在原来的基础上面进行修改就可以了:


2.字符串放到新的列表里面

4.提取高频词语

机器学习模块sklearn可以帮助我们处理这个问题,这个模块里面含有许多的函数,可以直接进行评论的提取以及高频词的统计;sklearn不是内置的模块,需要我们在本地进行安装

(1)STEP1. 导入模块

我们需使用
from...import...,从 sklearn.feature_extraction.text 模块中导入 CountVectorizer 类。


(2)STEP2. 创建CountVectorizer对象

导入模块后,需要创建一个CountVectorizer对象,这样才能调用CountVectorizer类里面的某个方法或属性。

由于我们只想从评价中筛选出前15个出现频率最高的词语,所以传入了max_features=15。

# 从sklearn.feature_extraction.text中导入CountVectorizer
from sklearn.feature_extraction.text import CountVectorizer# 创建CountVectorizer对象,并存储在vect中
vect = CountVectorizer(max_features=15)


(3)STEP3. 使用fit_transform()函数构造词袋模型

X = vect.fit_transform(word)

这个里面的word就是我们前面新建的列表

这个里面的生成结果全部是数字,我们来解释一下:

(4)STEP4. 使用get_feature_names()提取关键词

# TODO 对vect对象使用get_feature_names(),并将结果赋值给keywords
keywords = vect.get_feature_names()# 输出keywords
print(keywords)

最后的返回结果就是高频词:

这篇关于Python人工智能应用---中文分词词频统计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877883

相关文章

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部