文献研读|AIGC溯源场景及研究进展

2024-04-04 22:44

本文主要是介绍文献研读|AIGC溯源场景及研究进展,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言:本文介绍关于AIGC生成阶段针对不同溯源场景的几篇相关工作。

如下图所示,在AIGC生成阶段,有4种溯源场景:

1)生成模型溯源训练数据
2)微调模型溯源预训练模型
3)AIGC溯源训练数据/训练概念
4)AIGC溯源生成模型
在这里插入图片描述
下面分别对不同溯源场景下的相关工作进行介绍。


目录

  • Detection and Attribtion of Models Trained on Generated Data. ICASSP, 2024.
  • Matching Pairs: Attributing Fine-Tuned Models to their Pre-Trained Large Language Models. ACL, 2023.
  • Evaluating Data Attribution for Text-to-Image Models. ICCV, 2023.
    • 数据集构建
    • 特征提取器训练
  • ProMark: Proactive Diffusion Watermarking for Causal Attribution. CVPR, 2024.
  • DE-FAKE: Detection and Attribution of Fake Images Generated by Text-to-Image Generation Models, CCS, 2023.


Detection and Attribtion of Models Trained on Generated Data. ICASSP, 2024.

Scenario: 生成模型溯源训练数据

RQ1:模型的训练数据为 real data / fake data?
RQ2:若模型的训练数据为 fake data,则由哪个 GAN 生成?

目标:判断 target model 的训练数据来源

核心思想:
Real dataset 分成:training data, probing dataset,testing data.

  1. 首先用 training data 训练 GANs,得到 GAN-generated data;
  2. 分别用 GAN-generated data 和 real data 训练 surrogate models 和 target models;
  3. 使用 probing dataset 探测 surrogate model 得到 output,用GAN数据训练的 surrogate model 的输出标签均为0,用真实数据训练的 surrogate model 的输出标签均为1,得到 binary dataset;
  4. 使用 binary dataset 训练 detector 。
  5. 使用 testing dataset 探测 target model 得到 output,如果该 target model 基于GAN数据训练,则其 output 送入 detector 的预测标签应该为0,否则应该为1.
    在这里插入图片描述

若为溯源问题,则对于步骤3:

  • Closed-World Attribution:binary dataset 改成多标签分类问题
  • Open-World Attribution:probing set 改为GAN生成数据,若probe image 和 model 训练使用的GAN数据来源一致,则标签为 1。

Matching Pairs: Attributing Fine-Tuned Models to their Pre-Trained Large Language Models. ACL, 2023.

Scenario: 微调模型溯源预训练模型
在这里插入图片描述
Code: https://github.com/IBM/model-attribution-in-machine-learning

核心思想:通过联合微调模型与预训练模型生成结果与提示词的特征,训练分类器,采用集成学习的方式确定微调模型对应的预训练模型。
在这里插入图片描述


Evaluating Data Attribution for Text-to-Image Models. ICCV, 2023.

Page: https://github.com/peterwang512/GenDataAttribution

Scenario: AIGC 溯源训练数据

核心思想:首先构建具有对应关系的溯源数据集,然后使用对比学习的方式,优化特征提取器。

在这里插入图片描述

数据集构建

在这里插入图片描述

特征提取器训练

在这里插入图片描述

特征提取器训练的目标是:使得具有对应关系的合成图像+范本图像距离更近,而无对应关系的合成图像+范本图像距离更远。具体使用对比学习损失来进行训练。


ProMark: Proactive Diffusion Watermarking for Causal Attribution. CVPR, 2024.

Scenario: AIGC 溯源训练概念(概念水印)
在这里插入图片描述

核心思想:使用水印嵌入的方式,实现概念水印的嵌入和提取。

在这里插入图片描述


DE-FAKE: Detection and Attribution of Fake Images Generated by Text-to-Image Generation Models, CCS, 2023.

Scenario: AIGC 溯源生成模型

在这里插入图片描述

核心思想:训练二/多分类器,溯源生成模型。

(1)Image-Only: image 特征提取,后训练(ResNet-18)
(2)Hybrid: image 和 prompt 的特征联合提取拼接,后训练(CLIP+MLP)

在这里插入图片描述


参考文献

  1. Han G, Salem A, Li Z, et al. Detection and Attribution of Models Trained on Generated Data. ICASSP, 2024.
  2. Foley M, Rawat A, Lee T, et al. Matching Pairs: Attributing Fine-Tuned Models to their Pre-Trained Large Language Models. ACL, 2023.
  3. Wang S Y, Efros A A, Zhu J Y, et al. Evaluating data attribution for text-to-image models. ICCV, 2023.
  4. Asnani V, Collomosse J, Bui T, et al. ProMark: Proactive Diffusion Watermarking for Causal Attribution. CVPR, 2024.
  5. Sha Z, Li Z, Yu N, et al. De-fake: Detection and attribution of fake images generated by text-to-image generation models. CCS, 2023.

这篇关于文献研读|AIGC溯源场景及研究进展的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877003

相关文章

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

Spring Security 前后端分离场景下的会话并发管理

《SpringSecurity前后端分离场景下的会话并发管理》本文介绍了在前后端分离架构下实现SpringSecurity会话并发管理的问题,传统Web开发中只需简单配置sessionManage... 目录背景分析传统 web 开发中的 sessionManagement 入口ConcurrentSess

99%的人都选错了! 路由器WiFi双频合一还是分开好的专业解析与适用场景探讨

《99%的人都选错了!路由器WiFi双频合一还是分开好的专业解析与适用场景探讨》关于双频路由器的“双频合一”与“分开使用”两种模式,用户往往存在诸多疑问,本文将从多个维度深入探讨这两种模式的优缺点,... 在如今“没有WiFi就等于与世隔绝”的时代,越来越多家庭、办公室都开始配置双频无线路由器。但你有没有注

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应