Python环境下基于离散小波变换的信号降噪方法

2024-04-04 21:52

本文主要是介绍Python环境下基于离散小波变换的信号降噪方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Mallat创造了小波分析中的经典理论之一,即多分辨率分析的概念。后来,在Mallat与Meyer的共同努力之下,他们又在这一理论的基础上发明了离散小波变换的快速算法,这就是Mallat塔式算法,这种算法可以大量减少计算时间。在之前的二十年之间,小波分析方法在自身不断发展壮大的同时,也被许多学者在信号降噪领域进行了普及与应用。以Mallat为代表的一系列学者提出了模极大值重构滤波方法。这一方法的原理是:信号与噪声的小波系数在变换尺度变化的情况下,Lipschitz指数会呈现出不同的变化特点,以此来分辨信号与噪声从而进行滤波处理。

Donoho和JollllStone等在小波变换的基础上首次提出了小波域阈值滤波原理,该原理认为幅值较大的小波系数是由信号产生的。随后Donoho进一步完善了该方法,并在高斯噪声模型下推导出了通用阈值公式。Coifman和Donoho在进一步完善了小波阈值滤波方法后,提出了一种既能有效地实现信号降噪,又能抑制伪吉布斯现象的方法,这就是平移不变量降噪法。

在综上所述的所有方法中,小波域阈值降噪方法在实际操作上更为简便,同时在计算上的工作量相比于其他方法也少很多,因而得到了最为广泛的应用。这也是本文选取小波阈值降噪方法开展试验探索的原因之一。但是,如何选择小波基与阈值函数,以及怎样来确定阈值等等,这些都是小波阈值降噪方法在实践中亟待解决的几个关键问题。常用的小波基种类有很多,所以对于不同的信号,选择什么样的小波函数能实现最优的降噪效果是一个有待解决的问题。

对于如何选取阈值函数的问题,可以从显示和隐式两类阈值函数分别进行分析。首先显式阈值函数秉持的核心观点是:仅处理较大的小波系数,而将较小的统统去掉。具体的代表有:硬阈值和软阈值两种阈值函数,对于数值较大的小波系数,硬阈值函数对其进行了保留,而软阈值函数却对其进行了一定的收缩处理;

基于Donoho的研究成果,有学者提出了半软阈值函数,但是在实际的操作中,需要确定两个阈值以及计算上的复杂性成为它在实践中的缺点;为了弥补这一系列不足,有学者又在不久之后提出用Garrote函数作为阈值函数,这样做的原因在于这种阈值函数在形式上类似于硬阈值函数,其自身具有一定程度的连续性。其次,隐式阈值函数是以贝叶斯模型为基础提出来的,它围绕的核心思想是假设真实信号的小波系数服从某一先验分布。这类阈值函数的确定往往需要扎实的统计学基础,且操作起来难度较大,在实际应用中并不多见,缺少一定的实践意义,此处便不再赘述。

对于降噪方法,还有一个问题不容忽视,即如何选择阈值。Donoho首先提出了通用阈值,之后,其在对于SURE函数的研究中,提出了Stein无偏风险阈值。Jason将广义交互验证原理用于降噪算法,可在不知道噪声方差的情况下获得最优的阈值。Abramovich把小波阈值处理当作一种多重假设检验问题,并使用错误发现率方法去检验它以获取最优阈值,该阈值称为FDR阈值。Chang基于贝叶斯框架,认为小波系数服从广义高斯分布,提出了一种简单且封闭式的阈值——贝叶斯阈值,该阈值在图像处理领域得到了广泛应用。

该项目采用简单的离散小波分解对信号进行降噪,采用多种阈值方法,如下:

1. **universal**

The threshold, in this case, is given by the formula MAD x sqrt{2 x log(m)},

where MAD is the Median Absolute Deviation, and m is the length of the signal.

2. **sqtwolog**

Same as the universal, except that it does not use the MAD.

3. **energy**

In this case, the thresholding algorithm estimates the energy levels

of the detail coefficients and uses them to estimate the optimal threshold.

4. **stein**

This method implements Stein's unbiased risk estimator.

5. **heurstein**

This is a heuristic implementation of Stein's unbiased risk estimator.

运行环境为Python环境,所使用的模块如下:

numpy
scipy
matplotlib
scikit-learn
PyWavelets
Pandas

运行代码如下:

import numpy as np
# import pandas as pd
import matplotlib.pylab as plt# from scipy.signal import butter, filtfilt
from scipy.signal import spectrogramfrom denoising import WaveletDenoisingdef plot_coeffs_distribution(coeffs):"""! Plots all the wavelet decomposition's coefficients. """fig = plt.figure()size_ = int(len(coeffs) // 2) + 1if size_ % 2 != 0:size_ = size_+1for i in range(len(coeffs)):ax = fig.add_subplot(size_, 2, i+1)ax.hist(coeffs[i], bins=50)def pretty_plot(data, titles, palet, fs=1, length=100, nperseg=256):"""! Plots the contents of the list data. """fig = plt.figure(figsize=(13, 13))fig.subplots_adjust(hspace=0.5, wspace=0.5)index = 1for i, d in enumerate(data):ax = fig.add_subplot(8, 2, index)ax.plot(d[:length], color=palet[i])ax.set_title(titles[i])ax = fig.add_subplot(8, 2, index+1)f, t, Sxx = spectrogram(d, fs=fs, nperseg=nperseg)ax.pcolormesh(t, f, Sxx, shading='auto')index += 2def run_experiment(data, level=2, fs=1, nperseg=256, length=100):"""! Run the wavelet denoising over the input data for each thresholdmethod."""# Experiments titles / thresholding methodstitles = ['Original data','Universal Method','SURE Method','Energy Method','SQTWOLOG Method','Heursure Method']# Theshold methodsexperiment = ['universal','stein','energy','sqtwolog','heurstein']# WaveletDenoising class instancewd = WaveletDenoising(normalize=False,wavelet='db3',level=level,thr_mode='soft',selected_level=level,method="universal",energy_perc=0.90)# Run all the experiments, first element in res is the original datares = [data]for i, e in enumerate(experiment):wd.method = experiment[i]res.append(wd.fit(data))# Plot all the results for comparisonpalet = ['r', 'b', 'k', 'm', 'c', 'orange', 'g', 'y']pretty_plot(res,titles,palet,fs=fs,length=length,nperseg=nperseg)if __name__ == '__main__':# ECG Dataimport pandas as pdfs = 100raw_data = pd.read_pickle("data/apnea_ecg.pkl")N = int(len(raw_data) // 1000)data = raw_data[:N].valuesdata = data[:, 0]run_experiment(data, level=3, fs=fs)plt.show()

if __name__ == '__main__':raw_data = np.genfromtxt("./data/Z001.txt")fc = 40fs = 173.61w = fc / (fs / 2)b, a = butter(5, w, 'low')data = filtfilt(b, a, raw_data)run_experiment(data, level=4, fs=fs)plt.show()

完整代码:Python环境下基于离散小波变换的信号降噪方法

工学博士,担任《Mechanical System and Signal Processing》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。

这篇关于Python环境下基于离散小波变换的信号降噪方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876900

相关文章

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows