【C++进阶】红黑树的复仇(红与黑的爱恨厮杀)

2024-04-04 17:20

本文主要是介绍【C++进阶】红黑树的复仇(红与黑的爱恨厮杀),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🪐🪐🪐欢迎来到程序员餐厅💫💫💫

          主厨:邪王真眼

主厨的主页:Chef‘s blog  

 所属专栏:c++大冒险
 

 总有光环在陨落,总有新星在闪烁


引言:

之前我们学习了 AVL树,不得不惊叹于他那近乎绝对的平衡,然而也惋惜于插入删除效率的低下,今天要讲的红黑树则是以相对的平衡换来了插入删除效率的大幅提高,可谓是各有千秋

ps:建议先看过AVL树后再来学习红黑树:

带你手撕AVL树 


一. 红黑树的概念

         红黑树是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或 Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

二 红黑树的性质

  • 1. 每个结点不是红色就是黑色
  • 2. 根节点是黑色的 
  • 3. 如果一个节点是红色的,则它的两个孩子结点是黑色的 
  • 4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点 
  • 5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点)
思考:
为什么满足以上性质,红黑树就能保证:最长路径中节点个数不会超过最短路径节点 个数的2倍?

推导:

  • 性质1不必多说
  • 性质2与后面的旋转有关
  • 性质3表明不能有连续的红色结点
  • 性质4表明理论最短路径就是纯黑节点路径

综上:

            我们可以认为事先建造好一颗纯黑节点的满二叉树,再在两个黑节点之间插入红节点,则理论最长路径就是一黑一红交替,不超过最短路径的二倍。

 三.红黑树的节点讲解及模拟

enum Color
{RED,BLACK
};
template<class K, class V>
struct RBTreeNode
{RBTreeNode<K, V>* _left;RBTreeNode<K, V>* _right;RBTreeNode<K, V>* _parent;pair<K, V> _kv;Color _col;RBTreeNode(pair<K, V>& kv = pair<K, V>()):_left(nullptr), _right(nullptr), _parent(nullptr), _kv(kv), _col(RED)
};

代码讲解:

  • 1.我们枚举出了Color
  • 2.除左右指针外,还有父亲指针,使得可以向上回溯
  • 3.用pair对象存储K值V值
  • 4.增加了颜色的成员变量,且默认颜色为红色

提问:

           为什么结点的颜色初始化为红色呢?

回答:

           因为插入新节点时(不为根部),如果插入黑色,一定破坏性质4,导致每条路径黑结点数目不同;而如果插入红色,有可能不会破坏性质3,所以结点初始化为红色。

四.红黑树模拟

4.1 成员变量

template<class K, class V>
class RBTree
{
protected:typedef RBTreeNode<K, V> Node;
public://函数
protected :Node* _root;
};

4.2插入

与搜索二叉树以及AVL树相比,红黑树的默认成员函数和遍历相差不大,所以这里重点讲插入

4.2.1插入过程:

  1. 以普通二叉搜索树的方式进行插入
  2. 根据插入后的不同情况进行调整 
	bool Insert(pair<K, V>& kv){if (_root == nullptr){_root = new Node(val);return true;}else{Node* cur = _root;Node* parent = nullptrwhile (cur){parent = cur;if (cur->_val > val)cur = cur->left;else if (cur->_val < val)cur = cur->_right;elsereturn false;}cur = new Node(val);if (parent->_val.first > cur->_val.first){parent->_left = cur;}else{parent->_parent = cur;}cur->_parent = parent;///从此处开始进行插入后的调整while (parent && parent->_col == RED){Node* grandparent = parent->_parent;Node* uncle = nullptr;if (grandparent->_left == parent)uncle = grandparent->_right;elseuncle = grandparent->_left;if (uncle && uncle->_col == RED){parent->_col = BLACK;uncle->_col = BLACK;grandparent->_col = RED;cur = grandparent;parent = cur->_parent;}else if (grandparent->_left == parent){if (parent->_left = cur){RotateR(grandparent);grandparent->_col = RED;parent->_col = BLACK;}else{RotateL(parent);RotateR(grandparent);grandparent->_col = RED;cur->_col = BLACK;}}else{if (parent->_right = cur){RotateL(grandparent);grandparent->_col = RED;parent->_col = BLACK;}else{RotateR(parent);RotateL(grandparent);grandparent->_col = RED;cur->_col = BLACK;}}void RotateL(AVLNode * parent)//左旋{Node* grandparent = parent->_parent;Node* ChildR = parent->_right;if (grandparent){if (grandparent->_left == parent)grandparent->_left = ChildR;elsegrandparent->_right = ChildR;}else_root = ChildR;ChildR->_parent = grandparent;parent->_right = ChildR->_left;ChildR->_left->_parent = parent;ChildR->_left = parent;parent->_parent = ChildR;ChildR->_bf = parent->_bf = 0;}void RotateR(AVLNode * parent)//右旋{Node* grandparent = parent->_parent;Node* ChildL = parent->_left;if (grandparent){if (grandparent->_left == parent)grandparent->_left = ChildL;elsegrandparent->_right = ChildL;}else_root = ChildL;ChildL->_parent = grandparent;//两两一组进行改变parent->_left = ChildL->_right;ChildL->_right->_parent = parent;ChildL->_right = parent;parent->_parent = ChildL;//ChildL->_bf = parent->_bf = 0;}void RotateRL(AVLNode * parent)//双旋,先右旋在左旋{Node* ChildR = parent->_right;int bf = ChildR->_left->_bf;RotateR(ChildR);RotateL(parent);if (bf == 0){parent->_bf = 0;ChildR->_bf = 0;ChildR->_left->_bf = 0;}else if (bf == 1){parent->_bf = -1;ChildR->_bf = 0;ChildR->_left->_bf = 0;}else if (bf == -1){parent->_bf = 0;ChildR->_left->_bf = 0;ChildR->_bf = 1;}else{assert(false);}}void RotateLR(AVLNode * parent)//双旋,先左旋,再右旋{Node* ChildL = parent->_left;int bf = ChildL->_right->_bf;RotateR(ChildL);RotateL(parent);if (bf == 0){parent->_bf = 0;ChildL->_bf = 0;ChildL->_right->_bf = 0;}else if (bf == 1){parent->_bf = 0;ChildL->_bf = -1;ChildL->_right->_bf = 0;}else if (bf == -1){parent->_bf = 1;ChildL->_right->_bf = 0;ChildL->_bf = 0;}else{assert(false);}}void Inorde(AVLNode * root, vector<pair<K, V>>&v){if (root == nullptr)return;Inorde(root->_left, v);v.push_back(root->_val);Inorde(root->_right, v);}}}}

插入后调整的分析:

  • 1.像AVL树一样,大框架也是向上回溯,判断循环进行条件是父亲节点不为空且父亲节点颜色为红.因为新节点的默认颜色是红色,如果其双亲节点的颜色是黑色,没有违反红黑树任何 性质,则不需要调整;
  • 2当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

    🍒🍒4.2.2情况一:

cur为红,p为红,g为黑,u存在且为红 

解决方式:
              将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。


🍒🍒4.2.3情况二:

cur为红,p为红,g为黑,u不存在/u存在且为黑,p是g的左孩子,cur是p的左孩子

解决方案:

  1. 先对grandparent进行右单旋
  2. 再将parent变黑,grandparent变红


🍒🍒4.2.4情况三

cur为红,p为红,g为黑,u不存在/u存在且为黑,p是g的左孩子,cur是p的右孩子

  重点提醒:

               可以发现左单旋后就变成了情况二

解决方案:

  1. 先对parent进行左单旋
  2. 再对grandparent进行右单旋
  3. 最后将cur变黑,grandparent变红,这里将cur变黑而不是parent是因为左单旋后cur取代了parent的位置


🍒🍒4.2.5情况四:

cur为红,p为红,g为黑,u不存在/u存在且为黑,p是g的右孩子,cur是p的右孩子

解决方案:

  1. 先对grandparent进行左单旋
  2. 再将parent变黑,grandparent变红


🍒🍒4.2.6情况五:

cur为红,p为红,g为黑,u不存在/u存在且为黑,p是g的右孩子,cur是p的左孩子

重点提醒:

               可以发现右单旋后就变成了情况四

解决方案:

  1. 先对parent进行右单旋
  2. 再对grandparent进行左单旋
  3. 最后将cur变黑,grandparent变红,这里将cur变黑而不是parent是因为左单旋后cur取代了parent的位置

5.红黑树的验证

红黑树的检测分为两步:

1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)

void Inorde(AVLNode * root, vector<pair<K, V>>&v)
{if (root == nullptr)return;Inorde(root->_left, v);v.push_back(root->_val);Inorde(root->_right, v);
}

2. 检测其是否满足红黑树的性质

bool IsBalance(Node*root)
{//空树也是红黑树if (root == nullptr)return true;//违反性质2if (root->_col == RED){cout << "树的根节点应该是黑色,可该树却是红色" << endl;return false;}//计算一条路径黑节点数量Node* cur = root;int num = 0;while (cur){if (cur->_col == BLACK)num++;cur = cur->_left;}return _IsBlance(root, num);
}
IsBalance(Node* root, size_t num, size_t cur_num)
{if (root == nullptr){//违反性质4if (num != cur_num){cout << "对于每个结点,从该结点到其所有后代叶结点的简单路径上,均包含相同数目的黑色结点,但该树却不是" << endlreturn false;}elsereturn true;}if (root->_col == BLACK)num++;//违反性质3if (root->_parent && root->_parent == RED && root->_col == RED){cout << "如果一个节点是红色的,则它的两个孩子结点是黑色的,可该树却出现了连续的红色节点" << endl;return false;}return IsBalance(root->_left, num, cur_num) && IsBalance(root->_right, num, cur_num);
}

6. 红黑树与AVL树的比较

       红黑树和 AVL 树都是高效的平衡二叉树, 增删改查的时间复杂度都是O(log N) ,红黑树不追 求绝对平衡,其只需保证 最长路径不超过最短路径的2倍 降低了插入和旋转的次数 所以在经常进行增删的结构中性能比 AVL 树更优,而且红黑树实现比较简单,所以实际运用中红 黑树更多。

7. 红黑树的应用

  • 1. C++ STL库 -- map/set、mutil_map/mutil_set 
  • 2. Java 库
  • 3. linux内核
  • 4. 其他一些库

创作不易,点赞关注支持一下吧

这篇关于【C++进阶】红黑树的复仇(红与黑的爱恨厮杀)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876390

相关文章

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window