经典文献阅读之--LOG-LIO(高效局部几何信息估计的激光雷达惯性里程计)

本文主要是介绍经典文献阅读之--LOG-LIO(高效局部几何信息估计的激光雷达惯性里程计),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 简介

局部几何信息即法线和点分布在基于激光雷达的同时定位与地图构建(SLAM)中是至关重要,因为它为数据关联提供了约束,进一步确定了优化方向,最终影响姿态的准确性。然而即使在使用KD树或体素图的辅助下,估计法线和点分布也是耗时的任务。为了实现快速法线估计,《LOG-LIO: A LiDAR-Inertial Odometry with Efficient Local Geometric Information Estimation》研究了激光雷达扫描帧的结构信息,提出了一种新颖的快速近似最小二乘(FALS)方法,通过预先计算的方位角信息,当新的扫描帧到达时,估计法线仅需要点的距离信息,为了高效估计点的分布,我们将ikd树扩展到体素管理地图,并在保持法线一致性的同时增量更新其点云分布。对于满足基于法线的可见性和一致性检查的扫描点,我们设计了一种稳健且准确的分层数据关联方案,其中点到曲面的关联优先于点到平面的关联,在分布趋于收敛后,再进一步固定体素以平衡时间消耗和表示的正确性。文中的公式较多,所以我们主要先了解具体表示以及主要内容。该工作实现已在https://github.com/tiev-tongji/LOG-LIO 开源,还将Ring FALS作为独立的法线工具开源在GitHub - tiev-tongji/RingFalsNormal: A novel fast approximate least squares normal estimator using the structural information of certain LiDAR, is fast and accurate compared to PCL, and meets the real-time requirements of the LIO system.。

1. 主要贡献

地图体素内逐步更新点云分布以保持空间信息的正确性,同时与法线保持一致性。为了平衡时间消耗和表示的正确性,我们在扩展的ikd树上管理地图,并在分布收敛后进一步固定分布。本工作的主要贡献如下:

  1. Ring FALS一种利用特定激光雷达的结构信息的新型快速近似最小二乘法法线估计器,与PCL相比快速而准确,满足LIO系统的实时要求。
  2. 考虑地图体素内点分布的鲁棒且准确的分层数据关联方案,其中点到曲面的关联优先于点到平面的关联,大尺度优先于小尺度。

2. 准备性工作

2.1 符号表示

2.2 LiDAR观测模型

图1. LiDAR观测模型和多尺度surfel关联的示意图。(a) 紫红色线条表示红色点的射线。八个点是Ring FALS用来估计红色点法线的邻域点。(b) 五个蓝色椭圆代表最近体素对应的绿色查询点在扩展ikd-tree中的小尺度surfel。橙色椭圆代表由小尺度surfel合并而成的大尺度surfel。绿色查询点首先与大尺度surfel关联。如果大尺度surfel不能满足第2.4节和第4.2节的条件,则与其所在体素的小尺度surfel关联

在实践中,LiDAR通过结合目标表面的方位和距离测量来获取一个点的三维坐标[18],[19],如图1(a)所示。LiDAR观测模型如下:

2.3 最小二乘法法线估计

正态分布的闭式解是协方差矩阵(方程(4)中的)最小特征值所对应的特征向量。

点击经典文献阅读之--LOG-LIO(高效局部几何信息估计的激光雷达惯性里程计) - 古月居可查看全文

这篇关于经典文献阅读之--LOG-LIO(高效局部几何信息估计的激光雷达惯性里程计)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875487

相关文章

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

在Golang中实现定时任务的几种高效方法

《在Golang中实现定时任务的几种高效方法》本文将详细介绍在Golang中实现定时任务的几种高效方法,包括time包中的Ticker和Timer、第三方库cron的使用,以及基于channel和go... 目录背景介绍目的和范围预期读者文档结构概述术语表核心概念与联系故事引入核心概念解释核心概念之间的关系

SpringMVC高效获取JavaBean对象指南

《SpringMVC高效获取JavaBean对象指南》SpringMVC通过数据绑定自动将请求参数映射到JavaBean,支持表单、URL及JSON数据,需用@ModelAttribute、@Requ... 目录Spring MVC 获取 JavaBean 对象指南核心机制:数据绑定实现步骤1. 定义 Ja

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

如何自定义一个log适配器starter

《如何自定义一个log适配器starter》:本文主要介绍如何自定义一个log适配器starter的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求Starter 项目目录结构pom.XML 配置LogInitializer实现MDCInterceptor

基于Python构建一个高效词汇表

《基于Python构建一个高效词汇表》在自然语言处理(NLP)领域,构建高效的词汇表是文本预处理的关键步骤,本文将解析一个使用Python实现的n-gram词频统计工具,感兴趣的可以了解下... 目录一、项目背景与目标1.1 技术需求1.2 核心技术栈二、核心代码解析2.1 数据处理函数2.2 数据处理流程

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与