机器学习(深度学习)缓解过拟合的方法——正则化及L1L2范数详解

本文主要是介绍机器学习(深度学习)缓解过拟合的方法——正则化及L1L2范数详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机器学习(深度学习)缓解过拟合的方法——正则化

    • L1范数和L2范数
      • L1范数
      • L2范数

过拟合的本质:模型对于噪声过于敏感,把训练样本里的噪声当做特征进行学习,以至于在测试集的表现不好,加入正则化后,当输入有轻微的改动,结果受到的影响较小。
正则化的方法主要有以下几种:

  1. 参数范数惩罚,比较好理解,将范数加入目标函数(损失函数),常见的有一范数,二范数
  2. 数据集增强
  3. 添加噪声
  4. earlystopping,当验证集的效果下降,而训练集还未收敛,提前终止训练
  5. 模型的融合,bagging方法
  6. Dropout(类似于bagging多个神经网络)
  7. Batch Normalization
  8. 简化网络结构
    本文接下来将详细介绍L1范数和L2范数,其他的正则化方法比较好理解,就不在详述

L1范数和L2范数

有监督的机器学习问题主要有两个任务:最小化误差和规则化参数。最小化误差主要是为了让模型拟合我们的训练数据,规则化参数是防止模型过分拟合训练数据。因为参数太多,会导致我们的模型复杂度上升,容易过拟合,也就是我们的训练误差会很小。但训练误差小并不是我们的最终目标,我们的目标是希望模型的测试误差小,也就是能准确的预测新的样本。所以,我们需要保证模型“简单”的基础上最小化训练误差,这样得到的参数才具有好的泛化性能(也就是测试误差也小),而模型“简单”就是通过规则函数来实现的。

L1范数

L1范数是指向量中各个元素绝对值之和,并且有使权值稀疏的特点。从数学的角度来讲,任何的规则化算子,如果他在Wi=0的地方不可微,并且可以分解为一个“求和”的形式,那么这个规则化算子就可以实现稀疏。这说是这么说,W的L1范数是绝对值,|w|在w=0处是不可微。
参数稀疏最大的好处在于特征的选择。一般来说,xi的大部分元素(也就是特征)都是和最终的输出yi没有关系或者不提供任何信息的,在最小化目标函数的时候考虑xi这些额外的特征,虽然可以获得更小的训练误差,但在预测新的样本时,这些没用的信息反而会被考虑,从而干扰了对正确yi的预测。稀疏规则化算子的引入就是为了完成特征自动选择,它会学习地去掉这些没有信息的特征,也就是把这些特征对应的权重置为0。

L2范数

L2范数的一个最大的特点是可以解决过拟合的问题。L2范数是指向量各元素的平方和然后求平方根。我们让L2范数的规则项||W||2最小,可以使得W的每个元素都很小,都接近于0,但与L1范数不同,它不会让它等于0,而是接近于0,这里是有很大的区别的哦。而越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象。为什么越小的参数说明模型越简单?我的理解是:比如模型把噪声考虑进去,会导致过拟合,但是噪声通常都是很小的,为了让噪声在模型的拟合中起作用,需要对噪声项乘以一个很大的系数。而二范数就避免了这种事情的发生。L2正则化之后w更新的时候前面的系数是小于1的,所以是权重衰减,而过拟合的函数变化都比较剧烈,所以局部导数大,即系数大,而L2可以衰减系数,所以有正则化效果
L2范数还要一个好处是可以解决优化过程中矩阵求逆很困难的情况,其实道理也很简单,之前求解矩阵逆的时候,为了追求精度,权值w会无限制的取很大,但是当结果稍微改变一丁点的时候,为了尽可能的拟合,W也会改变很大。加入二范数限制权值的大小,可以很好地缓解这个问题。

我们从几何的概念来考虑一下
在这里插入图片描述
如上图所示,L1范数和每个坐标相交的地方都有“角”出现,注意在角的位置会产生稀疏,而L2范数没有“角”,所以产生稀疏的概率就比较小了。
总结一下:L1会趋向于产生少量的特征,而其他的特征都是0,而L2会选择更多的特征,这些特征都会接近于0。Lasso在特征选择时候非常有用,而Ridge是一种规则化。

这篇关于机器学习(深度学习)缓解过拟合的方法——正则化及L1L2范数详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875355

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV