【深度学习|Pytorch】torchvision.datasets.ImageFolder详解

2024-04-04 07:36

本文主要是介绍【深度学习|Pytorch】torchvision.datasets.ImageFolder详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ImageFolder详解

  • 1、数据准备
  • 2、ImageFolder类的定义
    • transforms.ToTensor()解析
  • 3、ImageFolder返回对象

1、数据准备

创建一个文件夹,比如叫dataset,将cat和dog文件夹都放在dataset文件夹路径下:
在这里插入图片描述

2、ImageFolder类的定义

class ImageFolder(DatasetFolder):def __init__(self,root: str,transform: Optional[Callable] = None,target_transform: Optional[Callable] = None,loader: Callable[[str], Any] = default_loader,is_valid_file: Optional[Callable[[str], bool]] = None,):

可以看到,ImageFolder类有这几个参数:
root:图片存储的根目录,即存放不同类别图片文件夹的前一个路径。
transform:即对加载的这些图片进行的前处理的方式,这里可以传入一个实例化的torchvision.Compose()对象,里面包含了各种预处理的操作。
target_transform:对图片类别进行预处理,通常来说不会用到这一步,因此可以直接不传入参数,默认图像标签没有变换,如果需要进行标签的处理,同样可以传入一个实例化的torchvision.Compose()对象。
loader:表示图像数据加载的方式,通常采用默认的加载方式,ImageFolder加载图像的方式为调用PIL库,因此图像的通道顺序是RGB而非opencv的BGR
is_valid_file:获取图像文件路径的函数,并且可以检查是否有损坏的文件。
示例代码:

ROOT_TEST = 'dataset' #dataset/cat, dataset/dog
normalize = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
val_transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),normalize
])# 加载训练数据集
val_dataset = ImageFolder(ROOT_TEST, transform=val_transform)

transforms.ToTensor()解析

这里需要特别说一下ToTensor()这个函数的作用,刚接触深度学习的我那时以为只是单纯的将图像的ndarray和PIL格式转成Tensor格式,后来查看了一下源码之后发现,事情并没有这么简答!

   """Convert a PIL Image or ndarray to tensor and scale the values accordingly.This transform does not support torchscript.Converts a PIL Image or numpy.ndarray (H x W x C) in the range[0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)or if the numpy.ndarray has dtype = np.uint8In the other cases, tensors are returned without scaling... note::Because the input image is scaled to [0.0, 1.0], this transformation should not be used whentransforming target image masks. See the `references`_ for implementing the transforms for image masks... _references: https://github.com/pytorch/vision/tree/main/references/segmentation"""

这是关于ToTensor()函数的注解,这里明确指出了ToTensor()可以将PIL和ndarray格式的图像数据转成Tensor并缩放它们的值,这里的缩放他们的值的意思在下面也指出了,即将[0, 255]的像素值域归一化[0, 1.0],并且图像转换成Tensor格式之后,维度的顺序也会发生一点变化,从一开始的HWC变成了CHW的排列方式。

3、ImageFolder返回对象

以第一部分为例,我们用一个val_dataset接收了ImageFolder的返回值,那么这个Val_dataset对象里面包含了什么呢:
val_dataset.classes:存放着根目录下的子文件夹的名称(类别名称)的列表。
val_dataset.class_to_idx:存放着类别名称和各自的索引,字典类型。
val_dataset.extensions:存放着ImageFolder可以读取的图像格式名称,元组类型。
val_dataset.targets:存放着根目录下每一张图的类别索引。
val_dataset.transform:我们提供的transform的方式。
val_dataset.imgs:存放着根目录下每一张图的路径和类别索引。元组列表类型。
以上是关于这个ImageFolder返回的对象的属性的解析。

此外,我们可以通过一个for循环来遍历整个val_dataset的所有图像数据,其中val_dataset[i]是一个元组类型的数据,val_dataset[i][0]代表了前处理后的图像数据,类型为tensor,以AlexNet为例,此时的tensor应该是3 * 224 * 224的维度。val_dataset[i][1]代表了图像的类别索引。
完整示例代码:

import torch
from AlexNet import AlexNet
from torch.autograd import Variable
from torchvision import transforms
from torchvision.transforms import ToPILImage
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader# ROOT_TRAIN = 'D:/pycharm/AlexNet/data/train'
ROOT_TEST = 'dataset'# 将图像的像素值归一化到[-1,1]之间
normalize = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])val_transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),normalize
])# 加载训练数据集
val_dataset = ImageFolder(ROOT_TEST, transform=val_transform)# 如果有NVIDA显卡,转到GPU训练,否则用CPU
device = 'cuda' if torch.cuda.is_available() else 'cpu'# 模型实例化,将模型转到device
model = AlexNet().to(device)# 加载train.py里训练好的模型
model.load_state_dict(torch.load(r'save_model/model_best.pth'))# 结果类型
classes = ["cat","dog"
]# 把Tensor转化为图片,方便可视化
show = ToPILImage()# 进入验证阶段
model.eval()
for i in range(10):x, y = val_dataset[i][0], val_dataset[i][1]# show():显示图片# show(x).show()# torch.unsqueeze(input, dim),input(Tensor):输入张量,dim (int):插入维度的索引,最终扩展张量维度为4维x = Variable(torch.unsqueeze(x, dim=0).float(), requires_grad=False).to(device)with torch.no_grad():pred = model(x)# argmax(input):返回指定维度最大值的序号# 得到预测类别中最高的那一类,再把最高的这一类对应classes中的那一类predicted, actual = classes[torch.argmax(pred[0])], classes[y]# 输出预测值与真实值print(f'predicted:"{predicted}", actual:"{actual}"')

这篇关于【深度学习|Pytorch】torchvision.datasets.ImageFolder详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875182

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

idea的终端(Terminal)cmd的命令换成linux的命令详解

《idea的终端(Terminal)cmd的命令换成linux的命令详解》本文介绍IDEA配置Git的步骤:安装Git、修改终端设置并重启IDEA,强调顺序,作为个人经验分享,希望提供参考并支持脚本之... 目录一编程、设置前二、前置条件三、android设置四、设置后总结一、php设置前二、前置条件

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (