Whisper对于中文语音识别与转写中文文本优化的实践(Python3.10)

2024-04-04 07:20

本文主要是介绍Whisper对于中文语音识别与转写中文文本优化的实践(Python3.10),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原文:Whisper对于中文语音识别与转写中文文本优化的实践(Python3.10) - 知乎

阿里的FunAsr对Whisper中文领域的转写能力造成了一定的挑战,但实际上,Whisper的使用者完全可以针对中文的语音做一些优化的措施,换句话说,Whisper的“默认”形态可能在中文领域斗不过FunAsr,但是经过中文特殊优化的Whisper就未必了。

中文文本标注优化

Whisper经常被人诟病的一点是对中文语音转写后标点符号的支持不够完备。首先安装whisper:

pip install -U openai-whisper

编写转写脚本:

import whisper  
device = "cuda:0" if torch.cuda.is_available() else "cpu"
audio = whisper.load_audio(audio_path)  
audio = whisper.pad_or_trim(audio)model = whisper.load_model("large-v2",download_root="./whisper_model/")mel = whisper.log_mel_spectrogram(audio).to(model.device)options = whisper.DecodingOptions(beam_size=5)result = whisper.decode(model, mel, options)  
print(result.text)

程序返回:

Erwin_0.wav|Erwin|ZH|如果这个作战顺利。  
Erwin_1.wav|Erwin|ZH|你也许可以趁此机会干掉狩之巨人  
Erwin_10.wav|Erwin|ZH|如果到時候我不衝在最前面  
Erwin_11.wav|Erwin|ZH|他们根本不会往前冲然后我会第一个去死  
Erwin_12.wav|Erwin|ZH|地下室里到底有什么  
Erwin_13.wav|Erwin|ZH|也就无从知晓了好想去地下室看一看我之所以能撑着走到今天  
Erwin_14.wav|Erwin|ZH|就是因为相信这一天的到来。  
Erwin_15.wav|Erwin|ZH|因为艰辛着  
Erwin_16.wav|Erwin|ZH|我才想能够得到证实  
Erwin_17.wav|Erwin|ZH|我之前無數次的想過,要不然乾脆死了算了。  
Erwin_18.wav|Erwin|ZH|可即便如此,我還是想要實現父親的夢想。  
Erwin_19.wav|Erwin|ZH|然而现在  
Erwin_2.wav|Erwin|ZH|但得拿所有新兵不管選擇哪條路  
Erwin_20.wav|Erwin|ZH|她的答案就在我触手可及的地方  
Erwin_21.wav|Erwin|ZH|仅在咫尺死去的同伴们也是如此吗  
Erwin_22.wav|Erwin|ZH|那些流血的棲身,都是沒有意義的嗎?  
Erwin_23.wav|Erwin|ZH|不!不對!  
Erwin_24.wav|Erwin|ZH|那些死去士兵的意义将由我们来赋予  
Erwin_25.wav|Erwin|ZH|那些勇敢的死者可憐的死者  
Erwin_26.wav|Erwin|ZH|是他们的牺牲换来了我们活着的今天  
Erwin_27.wav|Erwin|ZH|让我们能站在这里否则今天我们将会死去  
Erwin_28.wav|Erwin|ZH|将依依托福给下一个活着的人  
Erwin_29.wav|Erwin|ZH|这就是我们与这个残酷的世界  
Erwin_3.wav|Erwin|ZH|我们基本都会死吧是的全灭的可能性相当的高  
Erwin_30.wav|Erwin|ZH|抗爭的意義  
Erwin_4.wav|Erwin|ZH|但事到如今,也只能做好玉石俱焚的觉悟。  
Erwin_5.wav|Erwin|ZH|將一切賭在獲勝渺茫的戰術上  
Erwin_6.wav|Erwin|ZH|到了这一步  
Erwin_7.wav|Erwin|ZH|要让那些年轻人们去死  
Erwin_8.wav|Erwin|ZH|就必须像一个一流的诈骗犯一样  
Erwin_9.wav|Erwin|ZH|对他们花言巧语一番

可以看到,除了语气特别强烈的素材,大部分都没有进行标点符号的标注。

但事实上,Whisper完全可以针对中文进行标注,只需要添加对应的引导词:

options = whisper.DecodingOptions(beam_size=5,prompt="生于忧患,死于欢乐。不亦快哉!")

这里通过prompt对其进行引导,通过逗号、句号以及感叹号对文本标注,引导后的效果:

Erwin_0.wav|Erwin|ZH|如果这个作战顺利。  
Erwin_1.wav|Erwin|ZH|你也许可以趁此机会干掉受之虚人。  
Erwin_10.wav|Erwin|ZH|如果到时候我不冲在最前面  
Erwin_11.wav|Erwin|ZH|他们根本不会往前冲,然后我会第一个去死。  
Erwin_12.wav|Erwin|ZH|地下室里到底有什么?  
Erwin_13.wav|Erwin|ZH|好想去地下室看一看,我之所以能撑着走到今天。  
Erwin_14.wav|Erwin|ZH|就是因为相信这一天的到来。  
Erwin_15.wav|Erwin|ZH|因为艰辛着D  
Erwin_16.wav|Erwin|ZH|我的猜想能够得到证实。  
Erwin_17.wav|Erwin|ZH|我之前无数次地想过,要不然干脆死了算了。  
Erwin_18.wav|Erwin|ZH|可即便如此,我还是想要实现父亲的梦想。  
Erwin_19.wav|Erwin|ZH|然而现在  
Erwin_2.wav|Erwin|ZH|但得拿所有新兵,不管选择哪条路。  
Erwin_20.wav|Erwin|ZH|他的答案就在我触手可及的地方。  
Erwin_21.wav|Erwin|ZH|竟在咫尺。死去的同伴们也是如此吗?  
Erwin_22.wav|Erwin|ZH|那些流血的牺牲,都是没有意义的吗?  
Erwin_23.wav|Erwin|ZH|不!不对!  
Erwin_24.wav|Erwin|ZH|那些死去士兵的意义将由我们来赋予!  
Erwin_25.wav|Erwin|ZH|那些勇敢的死者,可怜的死者!  
Erwin_26.wav|Erwin|ZH|是他们的牺牲换来了我们活着的今天!  
Erwin_27.wav|Erwin|ZH|让我们能站在这里,而今天我们将会死去!  
Erwin_28.wav|Erwin|ZH|将依依托福给下一个活着的人!  
Erwin_29.wav|Erwin|ZH|这就是我们与这个残酷的世界。  
Erwin_3.wav|Erwin|ZH|是的,全灭的可能性相当的高。  
Erwin_30.wav|Erwin|ZH|抗争的意义!  
Erwin_4.wav|Erwin|ZH|但事到如今,也只能做好玉石俱焚的觉悟。  
Erwin_5.wav|Erwin|ZH|将一切赌在获胜渺茫的战术上。  
Erwin_6.wav|Erwin|ZH|到了这一步  
Erwin_7.wav|Erwin|ZH|要让那些年轻人们去死。  
Erwin_8.wav|Erwin|ZH|就必须像一个一流的诈骗犯一样。  
Erwin_9.wav|Erwin|ZH|对他们花言巧语一番。

通过transformers来调用中文模型

transformers是一个用于自然语言处理(NLP)的开源库,由Hugging Face开发和维护。它提供了各种预训练的模型,包括文本生成、文本分类、命名实体识别等多种NLP任务的模型。transformers库基于Transformer模型架构,这是一种用于处理序列数据的深度学习模型。Transformer模型在NLP领域取得了巨大成功,因为它能够处理长距离依赖关系,并且在各种NLP任务上取得了优异的性能。

使用transformers库,开发人员可以轻松地访问和使用各种预训练的NLP模型,也可以使用该库进行模型的微调和训练。transformers库支持多种主流深度学习框架,包括PyTorch和TensorFlow。

首先安装transformers:

pip install -U transformers

编写转写代码:

from transformers import pipeline  device = "cuda:0" if torch.cuda.is_available() else "cpu"  def transcribe_bela(audio_path):  transcriber = pipeline(  "automatic-speech-recognition",   model="BELLE-2/Belle-whisper-large-v2-zh",  device=device  )  transcriber.model.config.forced_decoder_ids = (  transcriber.tokenizer.get_decoder_prompt_ids(  language="zh",   task="transcribe",  )  )  transcription = transcriber(audio_path)   print(transcription["text"])  return transcription["text"]

这里通过BELLE-2/Belle-whisper-large-v2-zh模型来进行转写,提高中文的识别准确度和效率。

这个模型是在whisper的large-v2模型上针对中文进行了微调,以增强中文语音识别能力, Belle-whisper-large-v2-zh 在中国 ASR 基准测试(包括 AISHELL1、AISHELL2、WENETSPEECH 和 HKUST)上表现出 30-70% 的相对改进。

该模型的官方地址:

https://huggingface.co/BELLE-2/Belle-whisper-large-v2-zh

当然,也不是没有缺陷,BELLE-2模型目前基于AISHELL、WENETSPEECH等数据做的微调,弱化了标点能力。

换句话说,没法通过引导词来打标,但其实也有其他解决方案,即可以基于标点模型 对转写文本加标点。比如这个方案:

https://modelscope.cn/models/damo/punc_ct-transformer_cn-en-common-vocab471067-large/summary

BELLE-2模型的作者相当热心,有问必答,这是笔者对其模型提的Issues:

https://github.com/LianjiaTech/BELLE/issues/571

现在该模型的瓶颈是,如果微调带标点的中文数据,这块开源数据相对比较少,无法进行有效的训练。

除了大模型的中文优化版本,也有针对small模型的中文优化版本:

https://huggingface.co/Jingmiao/whisper-small-chinese_base

结语

Whisper开源模型通过transformers的微调,可以将预训练模型应用于特定的中文NLP任务,从而提高模型在该任务上的性能。微调使模型能够学习适应特定任务的特征和模式,从而实现更好的效果。

发布于 2024-01-25 14:30・IP 属地北京

这篇关于Whisper对于中文语音识别与转写中文文本优化的实践(Python3.10)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/875150

相关文章

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python实现中文文本处理与分析程序的示例详解

《Python实现中文文本处理与分析程序的示例详解》在当今信息爆炸的时代,文本数据的处理与分析成为了数据科学领域的重要课题,本文将使用Python开发一款基于Python的中文文本处理与分析程序,希望... 目录一、程序概述二、主要功能解析2.1 文件操作2.2 基础分析2.3 高级分析2.4 可视化2.5

虚拟机Centos7安装MySQL数据库实践

《虚拟机Centos7安装MySQL数据库实践》用户分享在虚拟机安装MySQL的全过程及常见问题解决方案,包括处理GPG密钥、修改密码策略、配置远程访问权限及防火墙设置,最终通过关闭防火墙和停止Net... 目录安装mysql数据库下载wget命令下载MySQL安装包安装MySQL安装MySQL服务安装完成