Python基于深度学习的人脸识别项目源码+演示视频,利用OpenCV进行人脸检测与识别 preview

本文主要是介绍Python基于深度学习的人脸识别项目源码+演示视频,利用OpenCV进行人脸检测与识别 preview,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、原理介绍

该人脸识别实例是一个基于深度学习和计算机视觉技术的应用,主要利用OpenCV和Python作为开发工具。系统采用了一系列算法和技术,其中包括以下几个关键步骤:

  1. 图像预处理:首先,对输入图像进行预处理,包括读取图片、将图片灰度转换、修改图片的尺寸、绘制矩形_圆等。这些预处理步骤有助于提高后续人脸检测的准确性和稳定性。

  2. 人脸检测:利用OpenCV中的人脸检测器,基于卷积神经网络的面部检测器,以侦测图像中可能存在的人脸区域。Haar级联分类器通过将图像区域与预先定义的特征模式进行比对来识别人脸。

  3. 特征提取:当检测到人脸区域后,系统会利用深度学习技术从这些区域中提取特征。

  4. 人脸识别:提取的人脸特征将与预先存储的人脸特征数据库进行比对和匹配。本实例中导入的haarcascade_frontalface_default.xml 是 OpenCV 中的一个经典的 Haar 级联分类器模型文件,用于人脸检测。Haar 级联分类器是一种基于 Haar 特征的目标检测方法,特别适用于检测具有特定形状的物体,如人脸等。该模型文件包含了经过训练的分类器,用于检测人脸正面的区域。它是通过大量的正样本和负样本数据进行训练,从而学习了人脸的特征和非人脸的特征,并生成了能够有效检测人脸的分类器。在使用 cv2.CascadeClassifier() 加载该模型文件后,可以用于检测输入图像中的人脸。通常,它可以在许多场景下进行人脸检测,但其效果可能会受到光照、角度、遮挡等因素的影响。

    这是opencv的人脸检测的XML文件

    在这里插入图片描述

​ 这些可用于检测静止图像、视频和摄像头所得到图像中的人脸。它们各自的作用分别如下:

  • 人脸检测器(默认):haarcascade_frontalface_default.xml
  • 人脸检测器(快速 Harr):haarcascade_frontalface_alt2.xml
  • 人脸检测器(侧视):haarcascade_profileface.xml
  • 眼部检测器(左眼):haarcascade_lefteye_2splits.xml
  • 眼部检测器(右眼):haarcascade_righteye_2splits.xml
  • 嘴部检测器:haarcascade_mcs_mouth.xml
  • 鼻子检测器:haarcascade_mcs_nose.xml
  • 身体检测器:haarcascade_fullbody.xml
  • 人脸检测器(快速 LBP):lbpcascade_frontalface.xml
  1. 结果显示:系统将识别出的人脸标识符与相应的数据库信息关联,并在图像上框出被识别的人脸区域。

二、结果展示

1.人脸检测

在这里插入图片描述

2.检测图片中的多个人脸

在这里插入图片描述

3.检测视屏中的人脸

因Typro不支持视屏播放,请观看压缩包中video文件夹下的“检测视屏中人脸.mp4”

三、系统评估指标

系统性能将通过以下指标进行评估:

  • 准确性:系统在不同图片和视频上的人脸识别准确率。
  • 速度:系统处理图像的速度,包括人脸检测、特征提取和识别的耗时。
  • 鲁棒性:系统对于光照变化、姿态变化和遮挡等方面的稳健性。

经过测试,本实例识别速度较快,但准确性和鲁棒性仍有待提高!

四、过程分析

系统构建的步骤包括:

  • 下载opencv模块:OpenCV 支持 python 的模块,直接使用 pip 进行安装,命令如下:

    pip install opencv-python

    此命令会下载最新的版本,如需下载别的版本,可在‘python’后添加版本号

  • 导入实例代码、测试图片

  • 获取 Haar 级联数据:在 sources 的一个文件夹 data/haarcascades。该文件夹包含了所有 OpenCV 的人脸检测的XML 文件,这些可用于检测静止图像、视频和摄像头所得到图像中的人脸。本实例主要运用haarcascade_frontalface_default.xml

  • 进行测试:得出静态图像中单个人脸和多个人脸的检测结果,以及动态视频中人脸的检测结果。

  • 模型测试和优化:利用测试结果对系统进行评估,并对模型进行调整和优化。

以上步骤是构建本人脸识别实例的关键步骤。

完整代码下载地址:Python基于深度学习的人脸识别项目源码+演示视频

这篇关于Python基于深度学习的人脸识别项目源码+演示视频,利用OpenCV进行人脸检测与识别 preview的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874873

相关文章

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送