Python基于深度学习的人脸识别项目源码+演示视频,利用OpenCV进行人脸检测与识别 preview

本文主要是介绍Python基于深度学习的人脸识别项目源码+演示视频,利用OpenCV进行人脸检测与识别 preview,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、原理介绍

该人脸识别实例是一个基于深度学习和计算机视觉技术的应用,主要利用OpenCV和Python作为开发工具。系统采用了一系列算法和技术,其中包括以下几个关键步骤:

  1. 图像预处理:首先,对输入图像进行预处理,包括读取图片、将图片灰度转换、修改图片的尺寸、绘制矩形_圆等。这些预处理步骤有助于提高后续人脸检测的准确性和稳定性。

  2. 人脸检测:利用OpenCV中的人脸检测器,基于卷积神经网络的面部检测器,以侦测图像中可能存在的人脸区域。Haar级联分类器通过将图像区域与预先定义的特征模式进行比对来识别人脸。

  3. 特征提取:当检测到人脸区域后,系统会利用深度学习技术从这些区域中提取特征。

  4. 人脸识别:提取的人脸特征将与预先存储的人脸特征数据库进行比对和匹配。本实例中导入的haarcascade_frontalface_default.xml 是 OpenCV 中的一个经典的 Haar 级联分类器模型文件,用于人脸检测。Haar 级联分类器是一种基于 Haar 特征的目标检测方法,特别适用于检测具有特定形状的物体,如人脸等。该模型文件包含了经过训练的分类器,用于检测人脸正面的区域。它是通过大量的正样本和负样本数据进行训练,从而学习了人脸的特征和非人脸的特征,并生成了能够有效检测人脸的分类器。在使用 cv2.CascadeClassifier() 加载该模型文件后,可以用于检测输入图像中的人脸。通常,它可以在许多场景下进行人脸检测,但其效果可能会受到光照、角度、遮挡等因素的影响。

    这是opencv的人脸检测的XML文件

    在这里插入图片描述

​ 这些可用于检测静止图像、视频和摄像头所得到图像中的人脸。它们各自的作用分别如下:

  • 人脸检测器(默认):haarcascade_frontalface_default.xml
  • 人脸检测器(快速 Harr):haarcascade_frontalface_alt2.xml
  • 人脸检测器(侧视):haarcascade_profileface.xml
  • 眼部检测器(左眼):haarcascade_lefteye_2splits.xml
  • 眼部检测器(右眼):haarcascade_righteye_2splits.xml
  • 嘴部检测器:haarcascade_mcs_mouth.xml
  • 鼻子检测器:haarcascade_mcs_nose.xml
  • 身体检测器:haarcascade_fullbody.xml
  • 人脸检测器(快速 LBP):lbpcascade_frontalface.xml
  1. 结果显示:系统将识别出的人脸标识符与相应的数据库信息关联,并在图像上框出被识别的人脸区域。

二、结果展示

1.人脸检测

在这里插入图片描述

2.检测图片中的多个人脸

在这里插入图片描述

3.检测视屏中的人脸

因Typro不支持视屏播放,请观看压缩包中video文件夹下的“检测视屏中人脸.mp4”

三、系统评估指标

系统性能将通过以下指标进行评估:

  • 准确性:系统在不同图片和视频上的人脸识别准确率。
  • 速度:系统处理图像的速度,包括人脸检测、特征提取和识别的耗时。
  • 鲁棒性:系统对于光照变化、姿态变化和遮挡等方面的稳健性。

经过测试,本实例识别速度较快,但准确性和鲁棒性仍有待提高!

四、过程分析

系统构建的步骤包括:

  • 下载opencv模块:OpenCV 支持 python 的模块,直接使用 pip 进行安装,命令如下:

    pip install opencv-python

    此命令会下载最新的版本,如需下载别的版本,可在‘python’后添加版本号

  • 导入实例代码、测试图片

  • 获取 Haar 级联数据:在 sources 的一个文件夹 data/haarcascades。该文件夹包含了所有 OpenCV 的人脸检测的XML 文件,这些可用于检测静止图像、视频和摄像头所得到图像中的人脸。本实例主要运用haarcascade_frontalface_default.xml

  • 进行测试:得出静态图像中单个人脸和多个人脸的检测结果,以及动态视频中人脸的检测结果。

  • 模型测试和优化:利用测试结果对系统进行评估,并对模型进行调整和优化。

以上步骤是构建本人脸识别实例的关键步骤。

完整代码下载地址:Python基于深度学习的人脸识别项目源码+演示视频

这篇关于Python基于深度学习的人脸识别项目源码+演示视频,利用OpenCV进行人脸检测与识别 preview的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874873

相关文章

Python 异步编程 asyncio简介及基本用法

《Python异步编程asyncio简介及基本用法》asyncio是Python的一个库,用于编写并发代码,使用协程、任务和Futures来处理I/O密集型和高延迟操作,本文给大家介绍Python... 目录1、asyncio是什么IO密集型任务特征2、怎么用1、基本用法2、关键字 async1、async

Python实现剪贴板历史管理器

《Python实现剪贴板历史管理器》在日常工作和编程中,剪贴板是我们使用最频繁的功能之一,本文将介绍如何使用Python和PyQt5开发一个功能强大的剪贴板历史管理器,感兴趣的可以了解下... 目录一、概述:为什么需要剪贴板历史管理二、功能特性全解析2.1 核心功能2.2 增强功能三、效果展示3.1 主界面

Python与Java交互出现乱码的问题解决

《Python与Java交互出现乱码的问题解决》在现代软件开发中,跨语言系统的集成已经成为日常工作的一部分,特别是当Python和Java之间进行交互时,编码问题往往会成为导致数据传输错误、乱码以及难... 目录背景:为什么会出现乱码问题产生的场景解决方案:确保统一的UTF-8编码完整代码示例总结在现代软件

Python+Tkinter实现Windows Hosts文件编辑管理工具

《Python+Tkinter实现WindowsHosts文件编辑管理工具》在日常开发和网络调试或科学上网场景中,Hosts文件修改是每个开发者都绕不开的必修课,本文将完整解析一个基于Python... 目录一、前言:为什么我们需要专业的Hosts管理工具二、工具核心功能全景图2.1 基础功能模块2.2 进

Java使用Stream流的Lambda语法进行List转Map的操作方式

《Java使用Stream流的Lambda语法进行List转Map的操作方式》:本文主要介绍Java使用Stream流的Lambda语法进行List转Map的操作方式,具有很好的参考价值,希望对大... 目录背景Stream流的Lambda语法应用实例1、定义要操作的UserDto2、ListChina编程转成M

Python多重继承慎用的地方

《Python多重继承慎用的地方》多重继承也可能导致一些问题,本文主要介绍了Python多重继承慎用的地方,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录前言多重继承要慎用Mixin模式最后前言在python中,多重继承是一种强大的功能,它允许一个

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

Python中edge-tts实现便捷语音合成

《Python中edge-tts实现便捷语音合成》edge-tts是一个功能强大的Python库,支持多种语言和声音选项,本文主要介绍了Python中edge-tts实现便捷语音合成,具有一定的参考价... 目录安装与环境设置文本转语音查找音色更改语音参数生成音频与字幕总结edge-tts 是一个功能强大的

使用Python和PaddleOCR实现图文识别的代码和步骤

《使用Python和PaddleOCR实现图文识别的代码和步骤》在当今数字化时代,图文识别技术的应用越来越广泛,如文档数字化、信息提取等,PaddleOCR是百度开源的一款强大的OCR工具包,它集成了... 目录一、引言二、环境准备2.1 安装 python2.2 安装 PaddlePaddle2.3 安装

Python+PyQt5开发一个Windows电脑启动项管理神器

《Python+PyQt5开发一个Windows电脑启动项管理神器》:本文主要介绍如何使用PyQt5开发一款颜值与功能并存的Windows启动项管理工具,不仅能查看/删除现有启动项,还能智能添加新... 目录开篇:为什么我们需要启动项管理工具功能全景图核心技术解析1. Windows注册表操作2. 启动文件