GDPU 竞赛技能实践 天码行空6

2024-04-04 04:36

本文主要是介绍GDPU 竞赛技能实践 天码行空6,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目

C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。

中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.

输入
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令

输出
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。

输入样例1

1
10
1 2 3 4 5 6 7 8 9 10
Query 1 3
Add 3 6
Query 2 7
Sub 10 2
Add 6 3
Query 3 10
End 

输出样例1

Case 1:
6
33
59

👨‍🏫 参考地址

💖 线段树版 Main.java

在这里插入图片描述

import java.util.Scanner;class SegmentTree
{// 定义内部类 Node,表示线段树的节点class Node{int l, r, sum;// 区间为 [l,r],区间和为 sum// Node 类的构造函数,用于初始化节点的起始和结束位置以及和Node(int a, int b){this.l = a;this.r = b;this.sum = 0;}}//	数组存树,tree[i] 的左儿子为 tree[2i],右儿子为 tree[2i+1]Node[] tree; // 线段树数组,存储线段树的节点int[] workers; // 工兵营地人数数组,存储每个工兵营地的人数// SegmentTree 类的构造函数,初始化线段树和工兵营地人数数组SegmentTree(int n){tree = new Node[4 * n]; // 线段树数组的大小是工兵营地数量的 4 倍workers = new int[n + 1]; // 工兵营地人数数组的大小是工兵营地数量加一}// 构造线段树的方法/*** @param l   区间左边界* @param r   区间右边界* @param cur 当前区间的根节点*/void build(int l, int r, int cur){tree[cur] = new Node(l, r); // 初始化线段树的节点// 如果起始位置和结束位置相同,表示到达叶子节点,将叶子节点的和设置为对应工兵营地的人数if (l == r)tree[cur].sum = workers[l];else{// 如果不是叶子节点,则递归构造左右子树,并将当前节点的和设置为左右子树和的和int mid = (l + r) / 2;build(l, mid, cur * 2);build(mid + 1, r, cur * 2 + 1);tree[cur].sum = tree[cur * 2].sum + tree[cur * 2 + 1].sum;}}// 查询线段树中指定闭区间 [l,r] 的和/*** @param l   区间左边界* @param r   区间右边界* @param cur 当前区间的根节点*/int query(int l, int r, int cur){int sum = 0;// 如果查询范围包含了当前节点的范围,则返回当前节点的和if (l <= tree[cur].l && r >= tree[cur].r)sum += tree[cur].sum;else{int mid = (tree[cur].l + tree[cur].r) / 2;// 否则根据查询范围的位置递归查询左右子树if (l > mid)// 查询的区间 和 左区间 没有交集sum += query(l, r, cur * 2 + 1);else if (r <= mid)// 查询的区间 和 右区间 没有交集sum += query(l, r, cur * 2);else// 和左右区间都有交集{sum += query(l, r, cur * 2);sum += query(l, r, cur * 2 + 1);}}return sum;}// 在线段树中指定位置增加值/*** 单点修改:给 tree[idx].sum 加上 val 值* * @param idx 要修改的值下标* @param val 增加多少* @param cur 当前节点*/void add(int idx, int val, int cur){tree[cur].sum += val;// 子结点变动,父结点肯定得变动// 如果当前节点的范围等于要增加值的位置,则直接返回if (tree[cur].l == idx && tree[cur].r == idx)return;// 否则根据要增加值的位置递归更新左右子树if (idx > (tree[cur].l + tree[cur].r) / 2)add(idx, val, cur * 2 + 1);elseadd(idx, val, cur * 2);}
}public class Main
{public static void main(String[] args){Scanner sc = new Scanner(System.in);int cnt = 0;int t = sc.nextInt(); // 读取测试用例数量while (t-- > 0){int n = sc.nextInt(); // 读取工兵营地数量SegmentTree segmentTree = new SegmentTree(n); // 创建线段树实例segmentTree.workers[0] = 0;for (int i = 1; i <= n; i++)segmentTree.workers[i] = sc.nextInt(); // 读取每个工兵营地的人数segmentTree.build(1, n, 1); // 构造线段树System.out.println("Case " + ++cnt + ":");while (true){String ch = sc.next(); // 读取操作类型if (ch.equals("End"))break;else if (ch.equals("Query")){int l = sc.nextInt(); // 读取查询范围起始位置int r = sc.nextInt(); // 读取查询范围结束位置int sum = segmentTree.query(l, r, 1); // 查询线段树中指定范围的和System.out.println(sum); // 输出查询结果} else if (ch.equals("Add")){int idx = sc.nextInt(); // 读取要增加值的位置int x = sc.nextInt(); // 读取要增加的值segmentTree.add(idx, x, 1); // 在线段树中指定位置增加值} else if (ch.equals("Sub")){int idx = sc.nextInt(); // 读取要减少值的位置int x = sc.nextInt(); // 读取要减少的值segmentTree.add(idx, -x, 1); // 在线段树中指定位置减少值}}}}
}

运行结果
在这里插入图片描述

💖 离散数组版 Main.java

待补

这篇关于GDPU 竞赛技能实践 天码行空6的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/874806

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

MySQL分库分表的实践示例

《MySQL分库分表的实践示例》MySQL分库分表适用于数据量大或并发压力高的场景,核心技术包括水平/垂直分片和分库,需应对分布式事务、跨库查询等挑战,通过中间件和解决方案实现,最佳实践为合理策略、备... 目录一、分库分表的触发条件1.1 数据量阈值1.2 并发压力二、分库分表的核心技术模块2.1 水平分

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列

Python自定义异常的全面指南(入门到实践)

《Python自定义异常的全面指南(入门到实践)》想象你正在开发一个银行系统,用户转账时余额不足,如果直接抛出ValueError,调用方很难区分是金额格式错误还是余额不足,这正是Python自定义异... 目录引言:为什么需要自定义异常一、异常基础:先搞懂python的异常体系1.1 异常是什么?1.2

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer