微生物群落关键种识别:一种不依赖于网络的自上而下的方法

本文主要是介绍微生物群落关键种识别:一种不依赖于网络的自上而下的方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  微生物群落在促进养分循环、协助植物生长、维持人体健康等方面发挥着重要的作用。群落关键种对维持微生物群落稳定性具有重要影响,识别关键种一直是微生物生态学中的热点话题。识别关键种主要有两种框架:数据驱动的方法(data driven method)去除实验(perturbation experiment)。其中数据驱动的方法主要有三种:

  • 基于共现网络的方法
  • top-down方法
  • 基于深度学习的方法

注意:数据驱动的方法确定的关键种只是可能的关键种,还需要通过去除实验进一步地验证。

  • 基于共现网络的方法主要包括:构建共现网络→划分模块→计算模块间连通度和模块内连通度→确定关键种,该方法已在之前的博客中有所介绍:计算网络节点模块内连通度(within modular degree)和模块间连通度(between modular degree)。
  • 基于深度学习的方法:这里先做个预告,代码和数据都整理好了,预计下周上线,具体可参考论文Identifying keystone species in microbial communities using deep learning
  • 本文主要介绍top-down方法,该方法源于论文:Top-down identification of keystone taxa in the microbiome。该方法通过计算Empirical Presence-abundance Interrelation (EPI)来衡量物种的重要性。

EPI指标计算的流程是:

  1. 根据物种i的有-无划分为两组:
  2. 将该物种去除,并将剩余物种的相对丰度标准化,使其和为1;
  3. 然后计算组和组的距离,即该物种的重要性,EPI;
  4. 物种EPI高于平均值+两个标准差的物种可以确定为关键种。

这里的某物种 i i i 的EPI有三种衡量方法:
在这里插入图片描述
D 1 i {D}_{1}^{i} D1i 的计算:

  1. 根据物种 i i i 的有-无划分为两组:
  2. 将该物种去除,并将剩余物种的相对丰度标准化,使其和为1;
  3. 计算组和组样品的两两间的Bray-Crutis距离。假设有5个样品A、B、C、D、E,其中组:A、B、C, 组: D、E。组和组样品的两两间的距离矩阵为:
IDABC
Dxxxxxxxxx
Exxxxxxxxx
  1. 然后取该矩阵的平均值,即为 D 1 i {D}_{1}^{i} D1i

计算 D 1 i {D}_{1}^{i} D1i R代码如下:

EPI_D1 <- function(S) {library(vegan)# InitializationN <- nrow(S)M <- ncol(S)S_01 <- ifelse(S>0,1,0)D1 <- rep(NA, N)for (i in 1:N) {# If the species is always present/absent, D1 is undefinedif (sum(S_01[i, ], na.rm = TRUE) != 0 & sum(S_01[i, ], na.rm = TRUE) != M) {print(i)ind_pres <- S_01[i, ] != 0S2 <- S[-i, , drop = FALSE]S2 <- S2 / colSums(S2)bc <- as.matrix(vegdist(t(S2)))bc2 <- bc[ind_pres,!ind_pres]D1[i] <- sum(bc2) / (sum(ind_pres) * sum(!ind_pres))}}return(D1)
}

D 2 i {D}_{2}^{i} D2i 的计算:

  1. 根据物种 i i i 的有-无划分为两组:
  2. 将该物种去除,并将剩余物种的相对丰度标准化,使其和为1;
  3. 分别计算组和组样品的平均物种组成,获得 P ‾ \overline P P (P: Presence)和 A ‾ \overline A A (A: Absence),然后计算两者的平均值。假设有5个样品A、B、C、D、E,其中组:A、B、C, 组: D、E。组和组样品平均值如下:
IDABC P ‾ \overline P P
taxa1x1x2x3average(x1,x2,x3)
taxa2y1y2y3average(y1,y2,y3)
taxa3z1z2z3average(z1,z2,z3)
IDCD A ‾ \overline A A
taxa1x1x2average(x1,x2)
taxa2y1y2average(y1,y2)
taxa3z1z2average(z1,z2)
  1. 然后计算 P ‾ \overline P P A ‾ \overline A A的Bray-Crutis距离,即为 D 2 i {D}_{2}^{i} D2i

计算 D 2 i {D}_{2}^{i} D2i R代码如下:

EPI_D2 <- function(S) {N <- nrow(S)M <- ncol(S)S_01 <- ifelse(S>0,1,0)D2 <- rep(NA, N)for (i in 1:N) {# If the species is always present/absent, D2 is undefinedif (sum(S_01[i, ], na.rm = TRUE) != 0 & sum(S_01[i, ], na.rm = TRUE) != M) {print(i)# Dividing into the two groupsind_pres <- S_01[i, ] != 0S_pres <- as.matrix(S[, ind_pres])S_abs <- as.matrix(S[, !ind_pres])# Removing the i speciesS_pres <- S_pres[-i, , drop = FALSE]S_abs <- S_abs[-i, , drop = FALSE]# NormalizingS_pres <- S_pres / colSums(S_pres)S_abs <- S_abs / colSums(S_abs)# Calculating D2D2[i] <- vegdist(rbind(rowMeans(S_pres), rowMeans(S_abs)))[1]}}return(D2)
}

Q i {Q}^{i} Qi 的计算:

  1. 根据物种 i i i 的有-无划分为两组:
  2. 将该物种去除,并将剩余物种的相对丰度标准化,使其和为1;
  3. 计算样品间的Bray-Crutis距离;
  4. 设定一定的阈值,构建样品-样品的网络,这里网络中的节点代表样品;
  5. 对网络中的节点(代表样品)赋予模块,例如:模块1代表模块2代表
  6. 计算该网络的模块度(modularity),即为 Q i {Q}^{i} Qi

计算 Q i {Q}^{i} Qi 的R代码如下:

EPI_Q <- function(S, threshold_net) {N <- nrow(S)M <- ncol(S)S_01 <- ifelse(S > 0,1,0)Q <- rep(NA, N)modularity <- function(B, s) {library(igraph)B_graph <- graph.adjacency(B, mode = "undirected")d <- degree(B_graph) # Degree of each sampleq <- sum(B) / 2Qmod <- (t(s) %*% (B - (d %*% t(d)) / (2 * q)) %*% s) / (4 * q)return(Qmod)}for (i in 1:N) {# If the species is always present/absent, Q is undefinedif (sum(S_01[i, ], na.rm = TRUE) != 0 & sum(S_01[i, ], na.rm = TRUE) != M) {print(i)# Removing the i speciesS_i <- S[-i,]# NormalizingS_i <- S_i / colSums(S_i)# Building the networkdistances_i <- as.matrix(vegdist(t(S_i)))dist_threshold <- quantile(distances_i, threshold_net)B_i <- as.matrix(distances_i <= dist_threshold)diag(B_i) <- 0s_i <- as.numeric(S_01[i, ])s_i[s_i == 0] <- -1# CalculatingQ[i] <- modularity(B_i, s_i)}}return(Q)
}

更多测试数据及R代码可参考如下连接:https://mbd.pub/o/bread/ZZ2bm5hx

这篇关于微生物群落关键种识别:一种不依赖于网络的自上而下的方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874689

相关文章

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

SpringBoot排查和解决JSON解析错误(400 Bad Request)的方法

《SpringBoot排查和解决JSON解析错误(400BadRequest)的方法》在开发SpringBootRESTfulAPI时,客户端与服务端的数据交互通常使用JSON格式,然而,JSON... 目录问题背景1. 问题描述2. 错误分析解决方案1. 手动重新输入jsON2. 使用工具清理JSON3.

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

SpringBoot读取ZooKeeper(ZK)属性的方法实现

《SpringBoot读取ZooKeeper(ZK)属性的方法实现》本文主要介绍了SpringBoot读取ZooKeeper(ZK)属性的方法实现,强调使用@ConfigurationProperti... 目录1. 在配置文件中定义 ZK 属性application.propertiesapplicati