OpenMP并行程序设计——for循环并行化详解

2024-04-03 21:18

本文主要是介绍OpenMP并行程序设计——for循环并行化详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/40018735

在C/C++中使用OpenMP优化代码方便又简单,代码中需要并行处理的往往是一些比较耗时的for循环,所以重点介绍一下OpenMP中for循环的应用。个人感觉只要掌握了文中讲的这些就足够了,如果想要学习OpenMP可以到网上查查资料。工欲善其事,必先利其器。如果还没有搭建好omp开发环境的可以看一下OpenMP并行程序设计——Eclipse开发环境的搭建

首先,如何使一段代码并行处理呢?omp中使用parallel制导指令标识代码中的并行段,形式为:

       #pragma omp parallel{每个线程都会执行大括号里的代码}

比如下面这段代码:

#include <iostream>
#include "omp.h"
using namespace std;
int main(int argc, char **argv) {//设置线程数,一般设置的线程数不超过CPU核心数,这里开4个线程执行并行代码段omp_set_num_threads(4);
#pragma omp parallel{cout << "Hello" << ", I am Thread " << omp_get_thread_num() << endl;}
}

omp_get_thread_num()是获取当前线程id号

以上代码执行结果为:

Hello, I am Thread 1
Hello, I am Thread 0
Hello, I am Thread 2
Hello, I am Thread 3

可以看到,四个线程都执行了大括号里的代码,先后顺序不确定,这就是一个并行块。

带有for的制导指令:

for制导语句是将for循环分配给各个线程执行,这里要求数据不存在依赖。

使用形式为:

(1)#pragma omp parallel for

     for()

(2)#pragma omp parallel

    {//注意:大括号必须要另起一行#pragma omp forfor()}

注意:第二种形式中并行块里面不要再出现parallel制导指令,比如写成这样就不可以:

#pragma omp parallel

    {#pragma omp parallel forfor()}

第一种形式作用域只是紧跟着的那个for循环,而第二种形式在整个并行块中可以出现多个for制导指令。下面结合例子程序讲解for循环并行化需要注意的地方。

假如不使用for制导语句,而直接在for循环前使用parallel语句:(为了使输出不出现混乱,这里使用printf代替cout)

#include <iostream>
#include <stdio.h>
#include "omp.h"
using namespace std;
int main(int argc, char **argv) {//设置线程数,一般设置的线程数不超过CPU核心数,这里开4个线程执行并行代码段omp_set_num_threads(4);
#pragma omp parallelfor (int i = 0; i < 2; i++)//cout << "i = " << i << ", I am Thread " << omp_get_thread_num() << endl;printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());
}

输出结果为:

i = 0, I am Thread 0
i = 0, I am Thread 1
i = 1, I am Thread 0
i = 1, I am Thread 1
i = 0, I am Thread 2
i = 1, I am Thread 2
i = 0, I am Thread 3
i = 1, I am Thread 3

从输出结果可以看到,如果不使用for制导语句,则每个线程都执行整个for循环。所以,使用for制导语句将for循环拆分开来尽可能平均地分配到各个线程执行。将并行代码改成这样之后:

#pragma omp parallel forfor (int i = 0; i < 6; i++)printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());

输出结果为:

i = 4, I am Thread 2
i = 2, I am Thread 1
i = 0, I am Thread 0
i = 1, I am Thread 0
i = 3, I am Thread 1
i = 5, I am Thread 3

可以看到线程0执行i=0和1,线程1执行i=2和3,线程2执行i=4,线程3执行i=5。线程0就是主线程

这样整个for循环被拆分并行执行了。上面的代码中parallel和for连在一块使用的,其只能作用到紧跟着的for循环,循环结束了并行块就退出了。

上面的代码可以改成这样:

#pragma omp parallel{
#pragma omp forfor (int i = 0; i < 6; i++)printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());}

这写法和上面效果是一样的。需要注意的问题来了:如果在parallel并行块里再出现parallel会怎么样呢?回答这个问题最好的方法就是跑一遍代码看看,所以把代码改成这样:

#pragma omp parallel{
#pragma omp parallel forfor (int i = 0; i < 6; i++)printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());}

输出结果:

i = 0, I am Thread 0
i = 0, I am Thread 0
i = 1, I am Thread 0
i = 1, I am Thread 0
i = 2, I am Thread 0
i = 2, I am Thread 0
i = 3, I am Thread 0
i = 3, I am Thread 0
i = 4, I am Thread 0
i = 4, I am Thread 0
i = 5, I am Thread 0
i = 5, I am Thread 0
i = 0, I am Thread 0
i = 1, I am Thread 0
i = 0, I am Thread 0
i = 2, I am Thread 0
i = 1, I am Thread 0
i = 3, I am Thread 0
i = 2, I am Thread 0
i = 4, I am Thread 0
i = 3, I am Thread 0
i = 5, I am Thread 0
i = 4, I am Thread 0
i = 5, I am Thread 0

可以看到,只有一个线程0,也就是只有主线程执行for循环,而且总共执行4次,每次都执行整个for循环!所以,这样写是不对的。

当然,上面说的for制导语句的两种写法是有区别的,比如两个for循环之间有一些代码只能有一个线程执行,那么用第一种写法只需要这样就可以了:

#pragma omp parallel forfor (int i = 0; i < 6; i++)printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());//这里是两个for循环之间的代码,将会由线程0即主线程执行printf("I am Thread %d\n", omp_get_thread_num());
#pragma omp parallel forfor (int i = 0; i < 6; i++)printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());

离开了for循环就剩主线程了,所以两个循环间的代码是由线程0执行的,输出结果如下:

i = 0, I am Thread 0
i = 2, I am Thread 1
i = 1, I am Thread 0
i = 3, I am Thread 1
i = 4, I am Thread 2
i = 5, I am Thread 3
I am Thread 0
i = 4, I am Thread 2
i = 2, I am Thread 1
i = 5, I am Thread 3
i = 0, I am Thread 0
i = 3, I am Thread 1
i = 1, I am Thread 0

但是如果用第二种写法把for循环写进parallel并行块中就需要注意了!

由于用parallel标识的并行块中每一行代码都会被多个线程处理,所以如果想让两个for循环之间的代码由一个线程执行的话就需要在代码前用single或master制导语句标识,master由是主线程执行,single是选一个线程执行,这个到底选哪个线程不确定。所以上面代码可以写成这样:

#pragma omp parallel{
#pragma omp forfor (int i = 0; i < 6; i++)printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());
#pragma omp master{//这里的代码由主线程执行printf("I am Thread %d\n", omp_get_thread_num());}
#pragma omp forfor (int i = 0; i < 6; i++)printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());}

效果和上面的是一样的,如果不指定让主线程执行,那么将master改成single即可。

到这里,parallel和for的用法都讲清楚了。接下来就开始讲并行处理时数据的同步问题,这是多线程编程里都会遇到的一个问题。

为了讲解数据同步问题,先由一个例子开始:

#include <iostream>
#include "omp.h"
using namespace std;
int main(int argc, char **argv) {int n = 100000;int sum = 0;omp_set_num_threads(4);
#pragma omp parallel{
#pragma omp forfor (int i = 0; i < n; i++) {{sum += 1;}}}cout << " sum = " << sum << endl;
}

期望的正确结果是100000,但是这样写是错误的。看代码,由于默认情况下sum变量是每个线程共享的,所以多个线程同时对sum操作时就会因为数据同步问题导致结果不对,显然,输出结果每次都不同,这是无法预知的,如下:

第一次输出sum = 58544
第二次输出sum = 77015
第三次输出sum = 78423

那么,怎么去解决这个数据同步问题呢?解决方法如下:

方法一:对操作共享变量的代码段做同步标识

代码修改如下:

#pragma omp parallel{
#pragma omp forfor (int i = 0; i < n; i++) {{
#pragma omp criticalsum += 1;}}}cout << " sum = " << sum << endl;

critical制导语句标识的下一行代码,也可以是跟着一个大括号括起来的代码段做了同步处理。输出结果100000

方法二:每个线程拷贝一份sum变量,退出并行块时再把各个线程的sum相加

并行代码修改如下:

#pragma omp parallel{
#pragma omp for reduction(+:sum)for (int i = 0; i < n; i++) {{sum += 1;}}}

reduction制导语句,操作是退出时将各自的sum相加存到外面的那个sum中,所以输出结果就是100000啦~~

方法三:这种方法貌似不那么优雅

代码修改如下:

int n = 100000;int sum[4] = { 0 };omp_set_num_threads(4);
#pragma omp parallel{
#pragma omp forfor (int i = 0; i < n; i++) {{sum[omp_get_thread_num()] += 1;}}}cout << " sum = " << sum[0] + sum[1] + sum[2] + sum[3] << endl;

每个线程操作的都是以各自线程id标识的数组位置,所以结果当然正确。

数据同步就讲完了,上面的代码中for循环是一个一个i平均分配给各个线程,如果想把循环一块一块分配给线程要怎么做呢?这时候用到了schedule制导语句。下面的代码演示了schedule的用法:

#include <iostream>
#include "omp.h"
#include <stdio.h>
using namespace std;
int main(int argc, char **argv) {int n = 12;omp_set_num_threads(4);
#pragma omp parallel{
#pragma omp for schedule(static, 3)for (int i = 0; i < n; i++) {{printf("i = %d, I am Thread %d\n", i, omp_get_thread_num());}}}
}

上面代码中for循环并行化时将循环很多很多块,每一块大小为3,然后再平均分配给各个线程执行。

输出结果如下:

i = 6, I am Thread 2
i = 3, I am Thread 1
i = 7, I am Thread 2
i = 4, I am Thread 1
i = 8, I am Thread 2
i = 5, I am Thread 1
i = 0, I am Thread 0
i = 9, I am Thread 3
i = 1, I am Thread 0
i = 10, I am Thread 3
i = 2, I am Thread 0
i = 11, I am Thread 3

从输出结果可以看到:线程0执行i=0 1 2,线程1执行i=3 4 5,线程2执行i=6 7 8,线程3执行i=9 10 11,如果后面还有则又从线程0开始分配。

OK,for循环并行化的知识基本讲完了,还有一个有用的制导语句barrier,用它可以在并行块中设置一个路障,必须等待所有线程到达时才能通过,这个一般在并行处理循环前后存在依赖的任务时使用到。

是不是很简单?


作者:陈靖_
来源:CSDN
原文:https://blog.csdn.net/zhongkejingwang/article/details/40350027
版权声明:本文为博主原创文章,转载请附上博文链接!

这篇关于OpenMP并行程序设计——for循环并行化详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/874004

相关文章

Spring创建Bean的八种主要方式详解

《Spring创建Bean的八种主要方式详解》Spring(尤其是SpringBoot)提供了多种方式来让容器创建和管理Bean,@Component、@Configuration+@Bean、@En... 目录引言一、Spring 创建 Bean 的 8 种主要方式1. @Component 及其衍生注解

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

springboot2.1.3 hystrix集成及hystrix-dashboard监控详解

《springboot2.1.3hystrix集成及hystrix-dashboard监控详解》Hystrix是Netflix开源的微服务容错工具,通过线程池隔离和熔断机制防止服务崩溃,支持降级、监... 目录Hystrix是Netflix开源技术www.chinasem.cn栈中的又一员猛将Hystrix熔

Java调用Python脚本实现HelloWorld的示例详解

《Java调用Python脚本实现HelloWorld的示例详解》作为程序员,我们经常会遇到需要在Java项目中调用Python脚本的场景,下面我们来看看如何从基础到进阶,一步步实现Java与Pyth... 目录一、环境准备二、基础调用:使用 Runtime.exec()2.1 实现步骤2.2 代码解析三、

python之uv使用详解

《python之uv使用详解》文章介绍uv在Ubuntu上用于Python项目管理,涵盖安装、初始化、依赖管理、运行调试及Docker应用,强调CI中使用--locked确保依赖一致性... 目录安装与更新standalonepip 安装创建php以及初始化项目依赖管理uv run直接在命令行运行pytho

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数