Transformer的代码实现 day03(Positional Encoding)

2024-04-03 19:28

本文主要是介绍Transformer的代码实现 day03(Positional Encoding),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Positional Encoding的理论部分

  • 注意力机制是不含有位置信息,这也就表明:“我爱你”,“你爱我”这两者没有区别,而在现实世界中,这两者有区别。
  • 所以位置编码是在进行注意力计算之前,给输入加上一个位置信息,如下图:
    在这里插入图片描述
  • 位置编码的公式如下:
    • 注意,pos表示该单词在句子中的位置,i表示该单词的输入向量的第i维度
      在这里插入图片描述
  • 由此我们可以得出不同位置之间的位置编码关系:
    在这里插入图片描述

Positional Encoding代码

  • 由于位置编码的公式固定,所以对于相同位置的位置编码也固定,即“我爱你”中的我,和“你爱我”中的你的位置编码相同
  • 所以我们可以一次将所有要输入信息的位置编码都生成出来,之后需要哪个就传哪个
class PositionalEncoding(nn.Module):def __init__(self, dim, dropout, max_len=5000):super(PositionalEncoding, self).__init__()# 确保每个单词的输入维度为偶数,这样sin和cos能配对if dim % 2 != 0:raise ValueError("Cannot use sin/cos positional encoding with ""odd dim (got dim={:d})".format(dim))"""构建位置编码pepe公式为:PE(pos,2i/2i+1) = sin/cos(pos/10000^{2i/d_{model}})"""pe = torch.zeros(max_len, dim)  # max_len 是解码器生成句子的最长的长度,假设是 10,dim为单词的输入维度# 将位置序号从一维变为只有一列的二维,方便与div_term进行运算,# 如将[0, 1, 2, 3, 4]变为:#[  #  [0],  #  [1],  #  [2],  #  [3],  #  [4]  #]position = torch.arange(0, max_len).unsqueeze(1)# 这里使用a^b = e^(blna)公式,来简化运算# torch.arange(0, dim, 2, dtype=torch.float)表示从0到dim-1,步长为2的一维张量# 通过以下公式,我们可以得出全部2i的(pos/10000^2i/dim)方便接下来的pe计算div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.float) *-(math.log(10000.0) / dim)))# 得出的div_term为从0开始,到dim-1,长度为dim/2,步长为2的一维张量# 将position与div_term做张量乘法,得到的张量形状为(max_len,dim/2)# 将结果取sin赋给pe中偶数维度,取cos赋给pe中奇数维度pe[:, 0::2] = torch.sin(position.float() * div_term)pe[:, 1::2] = torch.cos(position.float() * div_term)# 将pe的形状从(max_len,dim)变成(max_len,1,dim),在第二个维度上增加一个大小为1的新维度# 如从原始 pe 张量形状: (5, 4)  #[  # [a1, b1, c1, d1],  # [a2, b2, c2, d2],  # [a3, b3, c3, d3],  # [a4, b4, c4, d4],  # [a5, b5, c5, d5]  #]# 转换为:执行 unsqueeze(1) 后的 pe 张量形状: (5, 1, 4)  #[  # [[a1, b1, c1, d1]],  # [[a2, b2, c2, d2]],  # [[a3, b3, c3, d3]],  # [[a4, b4, c4, d4]],  # [[a5, b5, c5, d5]]  #]pe = pe.unsqueeze(1)# 将pe张量注册为模块的buffer。在PyTorch中,buffer是模型的一部分,但不包含可学习的参数(即不需要梯度)。# 这样做是因为位置编码在训练过程中是固定的,不需要更新。self.register_buffer('pe', pe)self.drop_out = nn.Dropout(p=dropout)self.dim = dimdef forward(self, emb, step=None):# 做乘法是因为在 Transformer 模型中,位置编码被加到输入张量中,而输入张量通常是词嵌入的向量,其值通常在较小的范围内。# 但是,在将位置编码添加到输入张量之前,我们希望将其值扩大到一个较大的范围,以便位置编码对输入的影响更加显著。# 注意:emb为输入张量,形状为(seq_len, dim),seq_len 表示输入的句子的长度,dim为单词的输入维度emb = emb * math.sqrt(self.dim)# 根据step来选择加入pe的哪一部分if step is None:# 如果pe的形状为(max_len, dim),那么pe[:a]表示:取pe的第0行到第a-1行的全部元素,得到的新二维张量的形状为(a, dim)# 而pe[:, a]表示:取pe的第a-1列的全部元素,得到的新一维张量的形状为(max_len)# 而pe[:, :a]表示:取pe的第0列到第a-1列的全部元素,得到的新二维张量的形状为(max_len,a)emb = emb + self.pe[:emb.size(0)]else:emb = emb + self.pe[step]emb = self.drop_out(emb)return emb

参考文献

  1. 04 Transformer 中的位置编码的 Pytorch 实现

这篇关于Transformer的代码实现 day03(Positional Encoding)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/873772

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S