使用OMP复原一维信号(MATLAB)

2024-04-03 18:04

本文主要是介绍使用OMP复原一维信号(MATLAB),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考文献

https://github.com/aresmiki/CS-Recovery-Algorithms/tree/master

在这里插入图片描述

MATLAB代码

%% 含有噪声
% minimize ||x||_1
% subject to: (||Ax-y||_2)^2<=eps;
% minimize :  (||Ax-y||_2)^2+lambda*||x||_1
% y传输中可能含噪 y=y+w
%
%%
clc;clearvars;
close all;
%% 1.构造一个两个谐波信号
lam=0.37;
itrs=400;
m=380;
sig=0.5;
n=1024;
dt=1/2000;
T=1023*dt;
t=0:dt:T;
t=t(:);
x=sin(697*pi*t)+sin(1975*pi*t);
Dn=dctmtx(n);%% 2.构造测量矩阵 
rand('state',15);
q=randperm(n);
q=q(:);
y=x(q(1:m));
randn('state',7)
w=sig*randn(m,1);  %产生噪声
yn=y+w;  %压缩矩阵有噪声
Psi1=Dn';%% 4. 重构信号  OMP
A=Psi1(q(1:m),:);
[xh,errr]=CS_OMP(yn,A,100);  %OMP
xx=Psi1*xh';
figure
plot(errr,'*-')
legend('OMP误差')figure
plot(t,x,'b',t,xx,'r');
legend('DCT-稀疏信号','OMP重构信号')figure
t1=50*dt:dt:100*dt;
plot(t1,x(50:100),'b',t1,xx(50:100),'r','linewidth',1.5)
legend('DCT-稀疏信号','OMP重构信号')%% CS_OMP  Algorithm
%-------------------------------------------------------------------------------------%
%  CS_OMP  Algorithm (正交匹配追踪法 Orthogonal Matching Pursuit)   
%  输入:y---测量信号  M X 1
%           A---恢复矩阵  M X N
%           K---迭代次数
% 输出 :theta---估计的稀疏向量 N X 1
%            erro_rn---每次迭代的误差
%  编程人: 何刘                                    Email: aresmiki@163.com
%  编程时间:2017年04月26日  西南交通大学牵引动力国家重点实验室
%                                        SWJTU  TPL
%  参考文献:Joel A. Tropp and Anna C. Gilbert 
%  Signal Recovery From Random Measurements Via Orthogonal Matching
%  Pursuit,IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 12,
%------------------------------------------------------------------------------------------%
%%   
function [ theta,erro_rn ] = CS_OMP( y,A,K )
N=max(size(A));
M=min(size(A));
theta=zeros(1,N);   %  待重构的向量    
Base_t=[];              %  记录基向量的矩阵
r_n=y;                  %  残差值
for times=1:K;                                    %  迭代次数(有噪声的情况下,该迭代次数为K)for col=1:N;                                  %  恢复矩阵的所有列向量product(col)=abs(A(:,col)'*r_n);          %  恢复矩阵的列向量和残差的投影系数(内积值) end[val,pos]=max(product);                       %  最大投影系数对应的位置,val值,pos位置Base_t=[Base_t,A(:,pos)];                       %  矩阵扩充,记录最大投影的基向量A(:,pos)=zeros(M,1);                          %  选中的列置零(实质上应该去掉,为了简单我把它置零)aug_y=(Base_t'*Base_t)^(-1)*Base_t'*y;   %  最小二乘,使残差最小r_n=y-Base_t*aug_y;                            %  残差erro_rn(times)=norm(r_n,2);      %迭代误差pos_array(times)=pos;                         %  纪录最大投影系数的位置if erro_rn(times)<1e-6 %break; %跳出for循环end
end
theta(pos_array)=aug_y;                           %  重构的向量
end

运行结果

在这里插入图片描述

这篇关于使用OMP复原一维信号(MATLAB)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/873605

相关文章

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

使用Python的requests库调用API接口的详细步骤

《使用Python的requests库调用API接口的详细步骤》使用Python的requests库调用API接口是开发中最常用的方式之一,它简化了HTTP请求的处理流程,以下是详细步骤和实战示例,涵... 目录一、准备工作:安装 requests 库二、基本调用流程(以 RESTful API 为例)1.

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3