06 | Swoole 源码分析之 Coroutine 协程模块

2024-04-03 11:52

本文主要是介绍06 | Swoole 源码分析之 Coroutine 协程模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首发原文链接:Swoole 源码分析之 Coroutine 协程模块
大家好,我是码农先森。

引言

协程又称轻量级线程,但与线程不同的是;协程是用户级线程,不需要操作系统参与。由用户显式控制,可以在需要的时候挂起、或恢复执行。

通过协程程序可以在执行的过程中保存当前的状态,并在恢复后从该状态处继续执行,整体上来说创建、销毁、切换的成本低。

但在 Swoole 中的协程是无法利用多核 CPU 的,如果想利用多核 CPU 则需要依赖 Swoole 的多进程模型。

协程的出现为 Swoole 程序提升并发效率、及系统的处理能力,注入了强劲的动力;可以说是 Swoole 作为高性能通信框架的的核心模块。

源码拆解

这次我们以下面这段代码,来作为本次拆解源码的切入点。

// 协程容器
Swoole\Coroutine\run(function () {// Socket 协程客户端$socket = new Swoole\Coroutine\Socket(AF_INET, SOCK_STREAM, 0);// 建立连接,在建立连接的过程中会发生协程切换$retval = $socket->connect('127.0.0.1', 9601);if ($retval) {// 发送数据,在发送数据的过程中会发生协程切换$n = $socket->send('hello');var_dump($n);// 解释数据,在接收数据的过程中会发生协程切换$data = $socket->recv();var_dump($data);// 关闭连接$socket->close();}
});

这段代码主要是使用 Socket 的协程客户端与本地的 9601 端口建立连接,并且发送、接收数据。在分析源码之前,我对这次的源码做了一个图解梳理,把整个调用链路上的函数串联了起来。我们可以先对整体有个大致的了解,便于后面分析源代码。

Socket 协程客户端

Socket 协程客户端是专门用于 Swoole 在协程环境中使用的,可以实现在 IO 调用时切换协程,让出 CPU 的使用权。例如:在连接建立、发送数据、接收数据 等阶段会进行协程的切换。

这个函数主要是发起 Socket 连接的建立,并且在 wait_event 这个函数内部实现了协程的切换。

// swoole-src/src/coroutine/socket.cc:595
bool Socket::connect(const struct sockaddr *addr, socklen_t addrlen) {if (sw_unlikely(!is_available(SW_EVENT_RDWR))) {return false;}int retval;do {// 发起连接建立retval = ::connect(sock_fd, addr, addrlen);} while (retval < 0 && errno == EINTR);if (retval < 0) {if (errno != EINPROGRESS) {set_err(errno);return false;} else {TimerController timer(&write_timer, connect_timeout, this, timer_callback);// wait_event 这个函数内部实现了协程的切换if (!timer.start() || !wait_event(SW_EVENT_WRITE)) {if (is_closed()) {set_err(ECONNABORTED);}return false;} else {if (socket->get_option(SOL_SOCKET, SO_ERROR, &errCode) < 0 || errCode != 0) {set_err(errCode);return false;}}}}connected = true;set_err(0);return true;
}

再看看 wait_event 函数的内部实现,先是获取到当前的协程,然后根据事件的类型调用函数 add_event 将事件添加到事件管理的结构体中,最后将当前的协程切换出去,让出其 CPU 的控制权。

// swoole-src/src/coroutine/socket.cc:147
bool Socket::wait_event(const EventType event, const void **__buf, size_t __n) {EventType added_event = event;// 获取到当前的协程Coroutine *co = Coroutine::get_current_safe();if (!co) {return false;}if (sw_unlikely(socket->close_wait)) {set_err(SW_ERROR_CO_SOCKET_CLOSE_WAIT);return false;}// clear the last errCodeset_err(0);
#ifdef SW_USE_OPENSSL// 根据事件的类型调用函数 add_event 将事件添加到事件管理的结构体中if (sw_unlikely(socket->ssl && ((event == SW_EVENT_READ && socket->ssl_want_write) ||(event == SW_EVENT_WRITE && socket->ssl_want_read)))) {if (sw_likely(socket->ssl_want_write && add_event(SW_EVENT_WRITE))) {want_event = SW_EVENT_WRITE;} else if (socket->ssl_want_read && add_event(SW_EVENT_READ)) {want_event = SW_EVENT_READ;} else {return false;}added_event = want_event;} else
#endifif (sw_unlikely(!add_event(event))) {return false;}swoole_trace_log(SW_TRACE_SOCKET,"socket#%d blongs to cid#%ld is waiting for %s event",sock_fd,co->get_cid(),get_wait_event_name(this, event));Coroutine::CancelFunc cancel_fn = [this, event](Coroutine *co) { return cancel(event); };// 将当前的协程切换出去,让出其 CPU 的控制权if (sw_likely(event == SW_EVENT_READ)) {read_co = co;read_co->yield(&cancel_fn);read_co = nullptr;} else if (event == SW_EVENT_WRITE) {if (sw_unlikely(!zero_copy && __n > 0 && *__buf != get_write_buffer()->str)) {write_buffer->clear();if (write_buffer->append((const char *) *__buf, __n) != SW_OK) {set_err(ENOMEM);goto _failed;}*__buf = write_buffer->str;}write_co = co;write_co->yield(&cancel_fn);write_co = nullptr;} else {assert(0);return false;}
_failed:
#ifdef SW_USE_OPENSSL// maybe read_co and write_co are all waiting for the same event when we use SSLif (sw_likely(want_event == SW_EVENT_NULL || !has_bound()))
#endif{Reactor *reactor = SwooleTG.reactor;if (sw_likely(added_event == SW_EVENT_READ)) {reactor->remove_read_event(socket);} else {reactor->remove_write_event(socket);}}
#ifdef SW_USE_OPENSSLwant_event = SW_EVENT_NULL;
#endifswoole_trace_log(SW_TRACE_SOCKET,"socket#%d blongs to cid#%ld trigger %s event",sock_fd,co->get_cid(),get_trigger_event_name(this, added_event));return !is_closed() && !errCode;
}

同理 send()recv() 函数,也和 connect() 函数是一样的实现方式。

// swoole-src/src/coroutine/socket.cc:847
ssize_t Socket::send(const void *__buf, size_t __n) {if (sw_unlikely(!is_available(SW_EVENT_WRITE))) {return -1;}ssize_t retval;TimerController timer(&write_timer, write_timeout, this, timer_callback);do {// 发送数据retval = socket->send(__buf, __n, 0);} while (retval < 0 && socket->catch_write_error(errno) == SW_WAIT && timer.start() &&wait_event(SW_EVENT_WRITE, &__buf, __n));check_return_value(retval);return retval;
}// swoole-src/src/coroutine/socket.cc:874
ssize_t Socket::recv(void *__buf, size_t __n) {if (sw_unlikely(!is_available(SW_EVENT_READ))) {return -1;}ssize_t retval;TimerController timer(&read_timer, read_timeout, this, timer_callback);do {// 接收数据retval = socket->recv(__buf, __n, 0);} while (retval < 0 && socket->catch_read_error(errno) == SW_WAIT && timer.start() && wait_event(SW_EVENT_READ));check_return_value(retval);return retval;
}

也是调用 wait_event() 函数来实现当前的协程切换,唯一的区别就是事件的类型不同,一个是读事件,一个是写事件。

Run 协程容器

在 Swoole 中要想使用协程,那么必须要在协程的环境中使用协程的客户端,或者支持 Hook 的原生 PHP 函数。才能享受到 Swoole 中协程带来的高性能,不然和普通的 PHP 执行程序没有什么区别,变成了同步阻塞。

在源码中协程容器主要是实现了事件循环的初始化、协程上下文的创建管理、事件循环的 IO 事件监听,接下来我们会主要分析关于事件管理的部分内容。

// swoole-src/src/coroutine/base.cc:210
namespace coroutine {bool run(const CoroutineFunc &fn, void *arg) {// 事件循环的初始化if (swoole_event_init(SW_EVENTLOOP_WAIT_EXIT) < 0) {return false;}// 协程上下文的创建管理Coroutine::activate();long cid = Coroutine::create(fn, arg);// 事件循环的 IO 事件监听swoole_event_wait();Coroutine::deactivate();return cid > 0;}
}

Event 事件初始化

Event 事件初始化主要是定义一些事件的回调函数,便于在事件被触发时恢复对应的协程进行后续的逻辑处理,例如:读事件回调函数 readable_event_callback、写事件回调函数 writable_event_callback 等。

// swoole-src/src/wrapper/event.cc:37
int swoole_event_init(int flags) {if (!SwooleG.init) {std::unique_lock<std::mutex> lock(init_lock);swoole_init();}// 创建一个 Reactor 实例对象Reactor *reactor = new Reactor(SW_REACTOR_MAXEVENTS);if (!reactor->ready()) {return SW_ERR;}if (flags & SW_EVENTLOOP_WAIT_EXIT) {reactor->wait_exit = 1;}// Socket 事件初始化coroutine::Socket::init_reactor(reactor);coroutine::System::init_reactor(reactor);network::Client::init_reactor(reactor);SwooleTG.reactor = reactor;return SW_OK;
}
// swoole-src/include/swoole_coroutine_sokcet.h:157
static inline void init_reactor(Reactor *reactor) {// 定义对应事件的回调函数reactor->set_handler(SW_FD_CO_SOCKET | SW_EVENT_READ, readable_event_callback);reactor->set_handler(SW_FD_CO_SOCKET | SW_EVENT_WRITE, writable_event_callback);reactor->set_handler(SW_FD_CO_SOCKET | SW_EVENT_ERROR, error_event_callback);
}
// swoole-src/src/coroutine/socket.c:48
int Socket::readable_event_callback(Reactor *reactor, Event *event) {Socket *socket = (Socket *) event->socket->object;socket->set_err(0);
#ifdef SW_USE_OPENSSLif (sw_unlikely(socket->want_event != SW_EVENT_NULL)) {if (socket->want_event == SW_EVENT_READ) {// 恢复对应的协程socket->write_co->resume();}} else
#endif{if (socket->recv_barrier && (*socket->recv_barrier)() && !event->socket->event_hup) {return SW_OK;}// 恢复对应的协程socket->read_co->resume();}return SW_OK;
}

Event 事件监听

Event 事件监听主要是针对被加入到事件循环中的 Socket 进行 IO 事件的监听,如果有读或写 IO 事件的触发,则回调到对应的处理函数上进行执行。

// swoole-src/src/warpper/event.cc:84
int swoole_event_wait() {Reactor *reactor = SwooleTG.reactor;int retval = 0;if (!reactor->wait_exit or !reactor->if_exit()) {// 事件循环等待调用retval = reactor->wait(nullptr);}swoole_event_free();return retval;
}
// swoole-src/src/reactor/epoll.cc:153
int ReactorEpoll::wait(struct timeval *timeo) {Event event;ReactorHandler handler;int i, n, ret;int reactor_id = reactor_->id;int max_event_num = reactor_->max_event_num;if (reactor_->timeout_msec == 0) {if (timeo == nullptr) {reactor_->timeout_msec = -1;} else {reactor_->timeout_msec = timeo->tv_sec * 1000 + timeo->tv_usec / 1000;}}reactor_->before_wait();while (reactor_->running) {if (reactor_->onBegin != nullptr) {reactor_->onBegin(reactor_);}// 监听 IO 事件n = epoll_wait(epfd_, events_, max_event_num, reactor_->get_timeout_msec());if (n < 0) {if (!reactor_->catch_error()) {swoole_sys_warning("[Reactor#%d] epoll_wait failed", reactor_id);return SW_ERR;} else {goto _continue;}} else if (n == 0) {reactor_->execute_end_callbacks(true);SW_REACTOR_CONTINUE;}for (i = 0; i < n; i++) {event.reactor_id = reactor_id;event.socket = (Socket *) events_[i].data.ptr;event.type = event.socket->fd_type;event.fd = event.socket->fd;if (events_[i].events & (EPOLLRDHUP | EPOLLERR | EPOLLHUP)) {event.socket->event_hup = 1;}// read 读事件,这里的 handler 对应 readable_event_callbackif ((events_[i].events & EPOLLIN) && !event.socket->removed) {handler = reactor_->get_handler(SW_EVENT_READ, event.type);ret = handler(reactor_, &event);if (ret < 0) {swoole_sys_warning("EPOLLIN handle failed. fd=%d", event.fd);}}// write 写事件,这里的 handler 对应 writable_event_callbackif ((events_[i].events & EPOLLOUT) && !event.socket->removed) {handler = reactor_->get_handler(SW_EVENT_WRITE, event.type);ret = handler(reactor_, &event);if (ret < 0) {swoole_sys_warning("EPOLLOUT handle failed. fd=%d", event.fd);}}// error 错误处理,这里的 handler 对应 error_event_callbackif ((events_[i].events & (EPOLLRDHUP | EPOLLERR | EPOLLHUP)) && !event.socket->removed) {// ignore ERR and HUP, because event is already processed at IN and OUT handler.if ((events_[i].events & EPOLLIN) || (events_[i].events & EPOLLOUT)) {continue;}handler = reactor_->get_error_handler(event.type);ret = handler(reactor_, &event);if (ret < 0) {swoole_sys_warning("EPOLLERR handle failed. fd=%d", event.fd);}}if (!event.socket->removed && (event.socket->events & SW_EVENT_ONCE)) {reactor_->_del(event.socket);}}_continue:reactor_->execute_end_callbacks(false);SW_REACTOR_CONTINUE;}return 0;
}

总结

  • 协程又称轻量级线程,协程是用户级线程;不需要操作系统参与,创建切换成本低。
  • Swoole 中的协程是无法利用多核 CPU 的,如果想利用多核 CPU 则需要依赖 Swoole 的多进程模型。
  • Swoole 中协程的是利用的 Event 事件循环进行调度的,将遇到 IO 操作的 Socket 统一加入到事件循环中。
  • 本次的源码分析旨在了解整个协程在 Swoole 中的运行逻辑,打开我们的思路,便于我们更好的体会到协程所带来的高性能价值。

在这里插入图片描述

这篇关于06 | Swoole 源码分析之 Coroutine 协程模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872851

相关文章

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Android协程高级用法大全

《Android协程高级用法大全》这篇文章给大家介绍Android协程高级用法大全,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友跟随小编一起学习吧... 目录1️⃣ 协程作用域(CoroutineScope)与生命周期绑定Activity/Fragment 中手

Nginx添加内置模块过程

《Nginx添加内置模块过程》文章指导如何检查并添加Nginx的with-http_gzip_static模块:确认该模块未默认安装后,需下载同版本源码重新编译,备份替换原有二进制文件,最后重启服务验... 目录1、查看Nginx已编辑的模块2、Nginx官网查看内置模块3、停止Nginx服务4、Nginx

python urllib模块使用操作方法

《pythonurllib模块使用操作方法》Python提供了多个库用于处理URL,常用的有urllib、requests和urlparse(Python3中为urllib.parse),下面是这些... 目录URL 处理库urllib 模块requests 库urlparse 和 urljoin编码和解码

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

创建springBoot模块没有目录结构的解决方案

《创建springBoot模块没有目录结构的解决方案》2023版IntelliJIDEA创建模块时可能出现目录结构识别错误,导致文件显示异常,解决方法为选择模块后点击确认,重新校准项目结构设置,确保源... 目录创建spChina编程ringBoot模块没有目录结构解决方案总结创建springBoot模块没有目录

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

idea Maven Springboot多模块项目打包时90%的问题及解决方案

《ideaMavenSpringboot多模块项目打包时90%的问题及解决方案》:本文主要介绍ideaMavenSpringboot多模块项目打包时90%的问题及解决方案,具有很好的参考价值,... 目录1. 前言2. 问题3. 解决办法4. jar 包冲突总结1. 前言之所以写这篇文章是因为在使用Mav