Python可视化概率统计和聚类学习分析生物指纹

2024-04-03 06:52

本文主要是介绍Python可视化概率统计和聚类学习分析生物指纹,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

🎯要点

  1. 🎯使用Jupyter Notebook执行Dash 应用,确定Dash输入输出,设计回调函数,Dash应用中包含函数。🎯使用Plotly绘图工具:配置图对象选项,​将图转换为HTML、图像。使用数据集绘图,使用回调函数创建交互式图。🎯 使用Plotly express 图表,创建贫困数据集图表。
  2. 🎯使用条形图和下拉菜单交互式比较值,垂直和水平绘制条形图,链接条形图和下拉列表,显示多个条形图的不同方式(堆叠、分组、重叠和相对),使用构面将图表拆分为多个子图表 - 水平、垂直或环绕,下拉菜单的附加功能(允许多项选择、添加占位符文本等)。🎯使用散点图探索变量并使用滑块过滤子集。🎯使用 Markdown 探索地图并丰富仪表板,等值线地图,利用动画帧向绘图添加新图层,使用地图回调函数,创建 Markdown 组件,地图投影,用散点图绘图,Mapbox 地图,纳入交互式地图。🎯计算数据频率并构建交互式表格,创建直方图,修改直方图的 bin 和使用多个直方图来自定义直方图,向直方图添加交互性,创建 2D 直方图,创建数据表,控制表格的外观(单元格宽度、高度、文本显示等),将直方图和表格添加到应用程序。🎯创建交互式 K均值集群应用程序。🎯创建控制其他组件的组件,添加动态组件。🎯提取和解析URL,创建多页应用。
  3. 🎯创建交互式网络分析,机场交通交互式仪表板,动画散点图,自然语言处理可视化。🎯Python和Julia交互式调用接口。🎯统计可视化、推理和建模。🎯化学指纹相似度评分的概率分布。🎯绘制概率密度并进行分析。🎯时间序列分解绘图。🎯公共安全统计学可视化。🎯死亡率统计分析。🎯量化分子相似度。🎯网络情感仪表板。

🍇Plotly和Dash仪表板

Dash 是由plotly 创建的一个Python 框架,用于创建交互式Web 应用程序。 Dash 是在 Flask、Plotly.js 和 React.js 之上编写的。 使用 Dash,您无需学习 HTML、CSS 和 Javascript 来创建交互式仪表板,您只需要 Python。 Dash 是开源的,使用该框架构建的应用程序可以在 Web 浏览器上查看。

Dash 应用程序由 2 个构建块组成:

  • 布局:布局描述了应用程序的外观和感觉,它定义了图形、下拉列表等元素以及这些元素的位置、大小、颜色等。 Dash 包含 Dash HTML 组件,我们可以使用 Python 创建 HTML 内容并设置其样式,例如标题、段落、图像等。 图形、下拉菜单、滑块等元素是使用 Dash Core 组件创建的。
  • 回调:回调用于为仪表板应用程序带来交互性。例如,我们可以使用这些函数来定义单击按钮或下拉菜单时将发生的活动。

现在,让我们看看如何使用plotly Dash 创建基于Web 的布局。

import dash
import dash_html_components as html
import dash_core_components as dcc
import plotly.graph_objects as go
import plotly.express as px

我们正在使用 dash 包初始化我们的 dash 应用程序。 然后,读取 2018 年至 2019 年不同公司的股价数据,创建 stock_prices 函数,该函数返回股价的折线图。

app = dash.Dash()   
df = px.data.stocks() def stock_prices():fig = go.Figure([go.Scatter(x = df['date'], y = df['GOH'],\line = dict(color = 'firebrick', width = 4), name = 'firm')])fig.update_layout(title = 'Prices over time',xaxis_title = 'Dates',yaxis_title = 'Prices')return fig  app.layout = html.Div(id = 'parent', children = [html.H1(id = 'H1', children = 'Styling using html components', style = {'textAlign':'center',\'marginTop':40,'marginBottom':40}),dcc.Graph(id = 'line_plot', figure = stock_prices())    ])

在第 16 行,我们使用 html Div 组件设置布局,该组件是一种包装器,将在其中创建布局的元素(标题、图形)。 Div 组件包含 id(元素的唯一标识符)、style(用于设置宽度、高度、颜色等)和子元素(等于初始化布局元素的方括号)等参数。

在(html.Div 的)子组件内,我们使用 H1 函数在第 17 行创建 html H1 标题。 在函数内部,我们设置函数的唯一 id (id = ‘H1’)、children 属性,使用它设置标题的文本,将 style 属性设置为字典,在其中设置样式,例如居中对齐文本 ,将顶部和底部边距设置为 40 像素。 在第 21 行,我们使用 dash 核心组件 (dcc) 创建 graph ,在其中设置图形的 id 和figure 参数,该参数等于返回绘图图形对象的函数调用 (stock_pricest())。

为了查看我们的应用程序,我们需要像在 Flask 中一样运行我们的 Web 服务器。请记住,Dash 是构建在 Flask 之上的。

if __name__ == '__main__': app.run_server()

运行应用程序时,您将看到该应用程序正在 http://127.0.0.1:8050/ 上运行,这是您的本地服务器。复制此网址并将其粘贴到您的浏览器中,您将看到以下可视化内容。

现在,让我们看看如何创建连接下拉列表和股价折线图的回调。

使用 @app.callback() 初始化回调,后面跟着函数定义。在此函数中,我们定义更改下拉列表的值时会发生什么。

from dash.dependencies import Input, Output  @app.callback(Output(component_id='line_plot', component_property= 'figure'),[Input(component_id='dropdown', component_property= 'value')])
def graph_update(dropdown_value):print(dropdown_value)fig = go.Figure([go.Scatter(x = df['date'], y = df['{}'.format(dropdown_value)],\line = dict(color = 'firebrick', width = 4))])fig.update_layout(title = 'Stock prices over time',xaxis_title = 'Dates',yaxis_title = 'Prices')return fig  

输入函数的组件属性,即下拉列表的“值”,作为函数 graph_update 中的参数。 在函数内部,我们创建散点图并返回图形对象Fig,该对象使用回调的Output函数传递给dcc.Graph的figure属性。

我们在下面的代码中组合布局、下拉菜单和回调:

import dash
import dash_html_components as html
import plotly.graph_objects as go
import dash_core_components as dcc
import plotly.express as px
from dash.dependencies import Input, Outputapp = dash.Dash()df = px.data.stocks()app.layout = html.Div(id = 'parent', children = [html.H1(id = 'H1', children = 'Styling using html components', style = {'textAlign':'center',\'marginTop':40,'marginBottom':40}),dcc.Dropdown( id = 'dropdown',options = [{'label':'Google', 'value':'GOOG' },{'label': 'Apple', 'value':'AAPL'},{'label': 'Amazon', 'value':'AMZN'},],value = 'GOOG'),dcc.Graph(id = 'bar_plot')])@app.callback(Output(component_id='bar_plot', component_property= 'figure'),[Input(component_id='dropdown', component_property= 'value')])
def graph_update(dropdown_value):print(dropdown_value)fig = go.Figure([go.Scatter(x = df['date'], y = df['{}'.format(dropdown_value)],\line = dict(color = 'firebrick', width = 4))])fig.update_layout(title = 'Stock prices over time',xaxis_title = 'Dates',yaxis_title = 'Prices')return fig  if __name__ == '__main__': app.run_server()

下图显示了下拉列表值的变化如何更新我们的股价折线图。

参阅一:计算思维
参阅二:亚图跨际

这篇关于Python可视化概率统计和聚类学习分析生物指纹的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872203

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Python中logging模块用法示例总结

《Python中logging模块用法示例总结》在Python中logging模块是一个强大的日志记录工具,它允许用户将程序运行期间产生的日志信息输出到控制台或者写入到文件中,:本文主要介绍Pyt... 目录前言一. 基本使用1. 五种日志等级2.  设置报告等级3. 自定义格式4. C语言风格的格式化方法

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚