【背包九讲】01背包问题

2024-04-03 06:38
文章标签 问题 01 背包 九讲

本文主要是介绍【背包九讲】01背包问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、01背包问题描述

已知:有 N 件物品和一个容量为 V 的背包。第i件物品的重量为w[i],得到的价值是 c[i].
问题:求解将哪些物品装入背包可使价值总和最大。
条件:每种物品只有一件,可以选择放或者不放

2、基本思路

01背包的特点:每种物品只有一件,可以选择放或者不放

子问题定义状态
F[i][v] :前i件物品放到一个容量为V的背包中的最大价值
状态转移方程
F[i][v] = max(F[i-1][v],F[i-1][v-w[i]]+c[i])

分析:
考虑到子问题的状态定义,将前i件物品都放到容量为V的背包中,那么第i件物品有两种选择:放&不放;
(1)当选择第i将物品不放入背包时,那么此时只有前i-1件物品放到容量为V的背包中,所以最大的价值为:F[i-1][v];
(2)当选择第i间物品放到背包时,那么此时前i-1件物品就会放到容量为V-w[i]的背包中,所以最大的价值为:F[i-1][v-w[i]+c[i]

举个栗子:
背包承重量10,5件物品,重量[2,3,3,4,6], 价值[1,2,5,9,4].

  • 填表
    在这里插入图片描述
    每一行表示每件物品的重量(价值),每一列表示最大承重,填表的内容表示当前的最大价值。

  • 填表的方法
    例如最大承重为5,第二行就只需要考虑2(1)和3(2)的情况,
    (1)如果不拿3(2),就只能选择上一行的物品,即只有2(1)这一种选择,价值为1;
    (2)如果拿3(2),物品的重量为3(价值为2),与此同时,还可以继续选择上一行的物品2(1),最终选择的物品价值为3;
    综上,选取物品的最大价值为3

  • 总结
    第i行,第j列的价值应该等于: max (dp[i-1][j], v[i]+ dp[i-1][j-w[i]])

代码实现

//01背包
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;int maxValue(int n, int c, vector<int> v, vector<int> w) 
{int **dp = new int*[n];//初始化for (int i = 0; i < n; i++) {dp[i] = new int[c + 1];for (int j = 0; j <= c; j++){dp[i][j] = 0;}}//处理第一行for (int j = 0; j <= c; j++){dp[0][j] += (j >= w[0]) ? v[0] : 0;}for (int i = 1; i < n; i++) {for (int j = 0; j <= c; j++) {if (j < w[i]){dp[i][j] = dp[i - 1][j];}else{dp[i][j] = max(v[i] + dp[i - 1][j - w[i]], dp[i - 1][j]);}}}return dp[n - 1][c];
}int main() 
{int n = 0, capacity = 0;//物品数量、背包容量cin >> n >> capacity;vector<int> values(n, 0);//物品价值vector<int> weights(n, 0);//物品重量for (int j = 0; j < n; j++)cin >> weights[j];for (int i = 0; i < n; i++)cin >> values[i];cout << maxValue(n, capacity, values, weights) << endl;system("pause");return 0;
}

性能分析
时间复杂度为:O(nv)
空间复杂度为:O(n
v),其中n表示物品的数量,v表示背包的容量
时间复杂度不能在优化,但是空间复杂度可以继续优化为O(v)

3、空间复杂度优化

上述方法采用的是二维数组,可以继续优化为一维数组

状态定义:F[v] :前i件物品放到一个容量为V的背包中的最大价值
状态转移方程:F[v]=max(F[v],F[v-w[i]]+c[i])

代码实现

//01背包
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;int maxValue_1(int n, int c, vector<int> v, vector<int> w)
{int *dp = new int[n];memset(dp, 0, sizeof(dp));for (int i = 1; i < n; i++){for (int j = c; j >= w[i]; j--){dp[j] = max(v[i] + dp[j - w[i]], dp[j]);}}return dp[c];
}int main()
{int n = 0, capacity = 0;//物品数量、背包容量cin >> n >> capacity;vector<int> values(n, 0);//物品价值vector<int> weights(n, 0);//物品重量for (int j = 0; j < n; j++)cin >> weights[j];for (int i = 0; i < n; i++)cin >> values[i];cout << maxValue_1(n, capacity, values, weights) << endl;system("pause");return 0;
}
4、初始化细节问题

在求解背包问题时,事实上有两种不太相同的问法。
有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。
这两种问法的实现方法是在初始化的时候有所不同。

(1)第一种问法,要求恰好装满背包,那么在初始化时除了 F[0] 为 0,其它F[1][v] 均设为 -∞ ,这样就可以保证最终得到的 F[V ] 是一种恰好装满背包的最优解。

(2)如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将 F[n][v]全部设为 0。

原因:初始化的 F 数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为 0 的背包可以在什么也不装且价值为 0 的情况下被“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,应该被赋值为 -∞ 了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为 0,所以初始时状态的值也就全部为 0了。

4、小结

01 背包问题是最基本的背包问题,它包含了背包问题中设计状态、方程的最基本思想。另外,别的类型的背包问题往往也可以转换成 01 背包问题求解。

这篇关于【背包九讲】01背包问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/872166

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使