[从0开始AIGC][Transformer相关]:Transformer中的激活函数:Relu、GELU、GLU、Swish

2024-04-03 00:04

本文主要是介绍[从0开始AIGC][Transformer相关]:Transformer中的激活函数:Relu、GELU、GLU、Swish,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[从0开始AIGC][Transformer相关]:Transformer中的激活函数

文章目录

  • [从0开始AIGC][Transformer相关]:Transformer中的激活函数
      • 1. FFN 块 计算公式?
      • 2. GeLU 计算公式?
      • 3. Swish 计算公式?
      • 4. 使用 GLU 线性门控单元的 FFN 块 计算公式?
      • 5. 使用 GeLU 的 GLU 块 计算公式?
      • 6. 使用 Swish 的 GLU 块 计算公式?

1. FFN 块 计算公式?

FFN(Feed-Forward Network)块是Transformer模型中的一个重要组成部分,接受自注意力子层的输出作为输入,并通过一个带有 Relu 激活函数的两层全连接网络对输入进行更加复杂的非线性变换。实验证明,这一非线性变换会对模型最终的性能产生十分 重要的影响。

FFN由两个全连接层(即前馈神经网络)和一个激活函数组成。下面是FFN块的计算公式:

FFN ⁡ ( x ) = Relu ⁡ ( x W 1 + b 1 ) W 2 + b 2 \operatorname{FFN}(\boldsymbol{x})=\operatorname{Relu}\left(\boldsymbol{x} \boldsymbol{W}_{1}+\boldsymbol{b}_{1}\right) \boldsymbol{W}_{2}+\boldsymbol{b}_{2} FFN(x)=Relu(xW1+b1)W2+b2

假设输入是一个向量 x x x,FFN块的计算过程如下:

  1. 第一层全连接层(线性变换): z = x W 1 + b 1 z = xW1 + b1 z=xW1+b1 其中,W1 是第一层全连接层的权重矩阵,b1 是偏置向量。
  2. 激活函数: a = g ( z ) a = g(z) a=g(z) 其中,g() 是激活函数,常用的激活函数有ReLU(Rectified Linear Unit)等。
  3. 第二层全连接层(线性变换): y = a W 2 + b 2 y = aW2 + b2 y=aW2+b2 其中,W2 是第二层全连接层的权重矩阵,b2 是偏置向量。

增大前馈子层隐状态的维度有利于提升最终翻译结果的质量,因此,前馈子层隐状态的维度一般比自注意力子层要大。

需要注意的是,上述公式中的 W1、b1、W2、b2 是FFN块的可学习参数,它们会通过训练过程进行学习和更新。

2. GeLU 计算公式?

GeLU(Gaussian Error Linear Unit)是一种激活函数,常用于神经网络中的非线性变换。它在Transformer模型中广泛应用于FFN(Feed-Forward Network)块。下面是GeLU的计算公式:

假设输入是一个标量 x,GeLU的计算公式如下:

G e L U ( x ) = 0.5 × x × ( 1 + t a n h ( 2 π × ( x + 0.044715 × x 3 ) ) ) GeLU(x) = 0.5 \times x \times (1 + tanh(\sqrt{\frac{2}{\pi}} \times (x + 0.044715 \times x^3))) GeLU(x)=0.5×x×(1+tanh(π2 ×(x+0.044715×x3)))

其中,tanh() 是双曲正切函数,sqrt() 是平方根函数,$ \pi $是圆周率。

import numpy as npdef GELU(x):return 0.5 * x * (1 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))

相对于 Sigmoid 和 Tanh 激活函数,ReLU 和 GeLU 更为准确和高效,因为它们在神经网络中的梯度消失问题上表现更好。而 ReLU 和 GeLU 几乎没有梯度消失的现象,可以更好地支持深层神经网络的训练和优化。

ReLU 和 GeLU 的区别在于形状和计算效率。ReLU 是一个非常简单的函数,仅仅是输入为负数时返回0,而输入为正数时返回自身,从而仅包含了一次分段线性变换。但是,ReLU 函数存在一个问题,就是在输入为负数时,输出恒为0,这个问题可能会导致神经元死亡,从而降低模型的表达能力。GeLU 函数则是一个连续的 S 形曲线,介于 Sigmoid 和 ReLU 之间,形状比 ReLU 更为平滑,可以在一定程度上缓解神经元死亡的问题。不过,由于 GeLU 函数中包含了指数运算等复杂计算,所以在实际应用中通常比 ReLU 慢。

总之,ReLU 和 GeLU 都是常用的激活函数,它们各有优缺点,并适用于不同类型的神经网络和机器学习问题。一般来说,ReLU 更适合使用在卷积神经网络(CNN)中,而 GeLU 更适用于全连接网络(FNN)。

3. Swish 计算公式?

Swish是一种激活函数,它在深度学习中常用于神经网络的非线性变换。Swish函数的计算公式如下:

S w i s h ( x ) = x × s i g m o i d ( β ∗ x ) Swish(x) = x \times sigmoid(\beta * x) Swish(x)=x×sigmoid(βx)

其中, s i g m o i d ( ) sigmoid() sigmoid() 是Sigmoid函数, x x x 是输入, β \beta β 是一个可调节的超参数。

Swish函数的特点是在接近零的区域表现得类似于线性函数,而在远离零的区域则表现出非线性的特性。相比于其他常用的激活函数(如ReLU、tanh等),Swish函数在某些情况下能够提供更好的性能和更快的收敛速度。

Swish函数的设计灵感来自于自动搜索算法,它通过引入一个可调节的超参数来增加非线性程度。当beta为0时,Swish函数退化为线性函数;当beta趋近于无穷大时,Swish函数趋近于ReLU函数。

需要注意的是,Swish函数相对于其他激活函数来说计算开销较大,因为它需要进行Sigmoid运算。因此,在实际应用中,也可以根据具体情况选择其他的激活函数来代替Swish函数。

4. 使用 GLU 线性门控单元的 FFN 块 计算公式?

使用GLU(Gated Linear Unit)线性门控单元的FFN(Feed-Forward Network)块是Transformer模型中常用的结构之一。它通过引入门控机制来增强模型的非线性能力。下面是使用GLU线性门控单元的FFN块的计算公式:

假设输入是一个向量 x,GLU线性门控单元的计算公式如下:

G L U ( x ) = x ∗ s i g m o i d ( W 1 ∗ x ) GLU(x) = x * sigmoid(W_1 * x) GLU(x)=xsigmoid(W1x)

其中, s i g m o i d ( ) sigmoid() sigmoid() 是Sigmoid函数, W 1 W_1 W1 是一个可学习的权重矩阵。

在公式中,首先将输入向量 x 通过一个全连接层(线性变换)得到一个与 x 维度相同的向量,然后将该向量通过Sigmoid函数进行激活。这个Sigmoid函数的输出称为门控向量,用来控制输入向量 x 的元素是否被激活。最后,将门控向量与输入向量 x 逐元素相乘,得到最终的输出向量。

GLU线性门控单元的特点是能够对输入向量进行选择性地激活,从而增强模型的表达能力。它在Transformer模型的编码器和解码器中广泛应用,用于对输入向量进行非线性变换和特征提取。

需要注意的是,GLU线性门控单元的计算复杂度较高,可能会增加模型的计算开销。因此,在实际应用中,也可以根据具体情况选择其他的非线性变换方式来代替GLU线性门控单元。

5. 使用 GeLU 的 GLU 块 计算公式?

使用GeLU作为激活函数的GLU块的计算公式如下:

G L U ( x ) = x ∗ G e L U ( W 1 ∗ x ) GLU(x) = x * GeLU(W_1 * x) GLU(x)=xGeLU(W1x)

其中,GeLU() 是Gaussian Error Linear Unit的激活函数,W_1 是一个可学习的权重矩阵。

在公式中,首先将输入向量 x 通过一个全连接层(线性变换)得到一个与 x 维度相同的向量,然后将该向量作为输入传递给GeLU激活函数进行非线性变换。最后,将GeLU激活函数的输出与输入向量 x 逐元素相乘,得到最终的输出向量。

GeLU激活函数的计算公式如下:

G e L U ( x ) = 0.5 × x × ( 1 + t a n h ( 2 π × ( x + 0.044715 × x 3 ) ) ) GeLU(x) = 0.5 \times x \times (1 + tanh(\sqrt{\frac{2}{\pi}} \times (x + 0.044715 \times x^3))) GeLU(x)=0.5×x×(1+tanh(π2 ×(x+0.044715×x3)))

其中,tanh() 是双曲正切函数,sqrt() 是平方根函数,$ \pi $是圆周率。

在公式中,GeLU函数首先对输入向量 x 进行一个非线性变换,然后通过一系列的数学运算得到最终的输出值。

使用GeLU作为GLU块的激活函数可以增强模型的非线性能力,并在某些情况下提供更好的性能和更快的收敛速度。这种结构常用于Transformer模型中的编码器和解码器,用于对输入向量进行非线性变换和特征提取。

需要注意的是,GLU块和GeLU激活函数是两个不同的概念,它们在计算公式和应用场景上有所区别。在实际应用中,可以根据具体情况选择合适的激活函数来代替GeLU或GLU。

6. 使用 Swish 的 GLU 块 计算公式?

使用Swish作为激活函数的GLU块的计算公式如下:

G L U ( x ) = x ∗ s i g m o i d ( W 1 ∗ x ) GLU(x) = x * sigmoid(W_1 * x) GLU(x)=xsigmoid(W1x)

其中, s i g m o i d ( ) sigmoid() sigmoid() 是Sigmoid函数, W 1 W_1 W1 是一个可学习的权重矩阵。

在公式中,首先将输入向量 x 通过一个全连接层(线性变换)得到一个与 x 维度相同的向量,然后将该向量通过Sigmoid函数进行激活。这个Sigmoid函数的输出称为门控向量,用来控制输入向量 x 的元素是否被激活。最后,将门控向量与输入向量 x 逐元素相乘,得到最终的输出向量。

Swish激活函数的计算公式如下:

S w i s h ( x ) = x × s i g m o i d ( β ∗ x ) Swish(x) = x \times sigmoid(\beta * x) Swish(x)=x×sigmoid(βx)

其中, s i g m o i d ( ) sigmoid() sigmoid() 是Sigmoid函数, x x x 是输入, β \beta β 是一个可调节的超参数。

在公式中,Swish函数首先对输入向量 x 进行一个非线性变换,然后通过Sigmoid函数进行激活,并将该激活结果与输入向量 x 逐元素相乘,得到最终的输出值。

使用Swish作为GLU块的激活函数可以增强模型的非线性能力,并在某些情况下提供更好的性能和更快的收敛速度。GLU块常用于Transformer模型中的编码器和解码器,用于对输入向量进行非线性变换和特征提取。

需要注意的是,GLU块和Swish激活函数是两个不同的概念,它们在计算公式和应用场景上有所区别。在实际应用中,可以根据具体情况选择合适的激活函数来代替Swish或GLU。

这篇关于[从0开始AIGC][Transformer相关]:Transformer中的激活函数:Relu、GELU、GLU、Swish的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/871410

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段

Django中的函数视图和类视图以及路由的定义方式

《Django中的函数视图和类视图以及路由的定义方式》Django视图分函数视图和类视图,前者用函数处理请求,后者继承View类定义方法,路由使用path()、re_path()或url(),通过in... 目录函数视图类视图路由总路由函数视图的路由类视图定义路由总结Django允许接收的请求方法http