[从0开始AIGC][Transformer相关]:Transformer中的激活函数:Relu、GELU、GLU、Swish

2024-04-03 00:04

本文主要是介绍[从0开始AIGC][Transformer相关]:Transformer中的激活函数:Relu、GELU、GLU、Swish,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

[从0开始AIGC][Transformer相关]:Transformer中的激活函数

文章目录

  • [从0开始AIGC][Transformer相关]:Transformer中的激活函数
      • 1. FFN 块 计算公式?
      • 2. GeLU 计算公式?
      • 3. Swish 计算公式?
      • 4. 使用 GLU 线性门控单元的 FFN 块 计算公式?
      • 5. 使用 GeLU 的 GLU 块 计算公式?
      • 6. 使用 Swish 的 GLU 块 计算公式?

1. FFN 块 计算公式?

FFN(Feed-Forward Network)块是Transformer模型中的一个重要组成部分,接受自注意力子层的输出作为输入,并通过一个带有 Relu 激活函数的两层全连接网络对输入进行更加复杂的非线性变换。实验证明,这一非线性变换会对模型最终的性能产生十分 重要的影响。

FFN由两个全连接层(即前馈神经网络)和一个激活函数组成。下面是FFN块的计算公式:

FFN ⁡ ( x ) = Relu ⁡ ( x W 1 + b 1 ) W 2 + b 2 \operatorname{FFN}(\boldsymbol{x})=\operatorname{Relu}\left(\boldsymbol{x} \boldsymbol{W}_{1}+\boldsymbol{b}_{1}\right) \boldsymbol{W}_{2}+\boldsymbol{b}_{2} FFN(x)=Relu(xW1+b1)W2+b2

假设输入是一个向量 x x x,FFN块的计算过程如下:

  1. 第一层全连接层(线性变换): z = x W 1 + b 1 z = xW1 + b1 z=xW1+b1 其中,W1 是第一层全连接层的权重矩阵,b1 是偏置向量。
  2. 激活函数: a = g ( z ) a = g(z) a=g(z) 其中,g() 是激活函数,常用的激活函数有ReLU(Rectified Linear Unit)等。
  3. 第二层全连接层(线性变换): y = a W 2 + b 2 y = aW2 + b2 y=aW2+b2 其中,W2 是第二层全连接层的权重矩阵,b2 是偏置向量。

增大前馈子层隐状态的维度有利于提升最终翻译结果的质量,因此,前馈子层隐状态的维度一般比自注意力子层要大。

需要注意的是,上述公式中的 W1、b1、W2、b2 是FFN块的可学习参数,它们会通过训练过程进行学习和更新。

2. GeLU 计算公式?

GeLU(Gaussian Error Linear Unit)是一种激活函数,常用于神经网络中的非线性变换。它在Transformer模型中广泛应用于FFN(Feed-Forward Network)块。下面是GeLU的计算公式:

假设输入是一个标量 x,GeLU的计算公式如下:

G e L U ( x ) = 0.5 × x × ( 1 + t a n h ( 2 π × ( x + 0.044715 × x 3 ) ) ) GeLU(x) = 0.5 \times x \times (1 + tanh(\sqrt{\frac{2}{\pi}} \times (x + 0.044715 \times x^3))) GeLU(x)=0.5×x×(1+tanh(π2 ×(x+0.044715×x3)))

其中,tanh() 是双曲正切函数,sqrt() 是平方根函数,$ \pi $是圆周率。

import numpy as npdef GELU(x):return 0.5 * x * (1 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * np.power(x, 3))))

相对于 Sigmoid 和 Tanh 激活函数,ReLU 和 GeLU 更为准确和高效,因为它们在神经网络中的梯度消失问题上表现更好。而 ReLU 和 GeLU 几乎没有梯度消失的现象,可以更好地支持深层神经网络的训练和优化。

ReLU 和 GeLU 的区别在于形状和计算效率。ReLU 是一个非常简单的函数,仅仅是输入为负数时返回0,而输入为正数时返回自身,从而仅包含了一次分段线性变换。但是,ReLU 函数存在一个问题,就是在输入为负数时,输出恒为0,这个问题可能会导致神经元死亡,从而降低模型的表达能力。GeLU 函数则是一个连续的 S 形曲线,介于 Sigmoid 和 ReLU 之间,形状比 ReLU 更为平滑,可以在一定程度上缓解神经元死亡的问题。不过,由于 GeLU 函数中包含了指数运算等复杂计算,所以在实际应用中通常比 ReLU 慢。

总之,ReLU 和 GeLU 都是常用的激活函数,它们各有优缺点,并适用于不同类型的神经网络和机器学习问题。一般来说,ReLU 更适合使用在卷积神经网络(CNN)中,而 GeLU 更适用于全连接网络(FNN)。

3. Swish 计算公式?

Swish是一种激活函数,它在深度学习中常用于神经网络的非线性变换。Swish函数的计算公式如下:

S w i s h ( x ) = x × s i g m o i d ( β ∗ x ) Swish(x) = x \times sigmoid(\beta * x) Swish(x)=x×sigmoid(βx)

其中, s i g m o i d ( ) sigmoid() sigmoid() 是Sigmoid函数, x x x 是输入, β \beta β 是一个可调节的超参数。

Swish函数的特点是在接近零的区域表现得类似于线性函数,而在远离零的区域则表现出非线性的特性。相比于其他常用的激活函数(如ReLU、tanh等),Swish函数在某些情况下能够提供更好的性能和更快的收敛速度。

Swish函数的设计灵感来自于自动搜索算法,它通过引入一个可调节的超参数来增加非线性程度。当beta为0时,Swish函数退化为线性函数;当beta趋近于无穷大时,Swish函数趋近于ReLU函数。

需要注意的是,Swish函数相对于其他激活函数来说计算开销较大,因为它需要进行Sigmoid运算。因此,在实际应用中,也可以根据具体情况选择其他的激活函数来代替Swish函数。

4. 使用 GLU 线性门控单元的 FFN 块 计算公式?

使用GLU(Gated Linear Unit)线性门控单元的FFN(Feed-Forward Network)块是Transformer模型中常用的结构之一。它通过引入门控机制来增强模型的非线性能力。下面是使用GLU线性门控单元的FFN块的计算公式:

假设输入是一个向量 x,GLU线性门控单元的计算公式如下:

G L U ( x ) = x ∗ s i g m o i d ( W 1 ∗ x ) GLU(x) = x * sigmoid(W_1 * x) GLU(x)=xsigmoid(W1x)

其中, s i g m o i d ( ) sigmoid() sigmoid() 是Sigmoid函数, W 1 W_1 W1 是一个可学习的权重矩阵。

在公式中,首先将输入向量 x 通过一个全连接层(线性变换)得到一个与 x 维度相同的向量,然后将该向量通过Sigmoid函数进行激活。这个Sigmoid函数的输出称为门控向量,用来控制输入向量 x 的元素是否被激活。最后,将门控向量与输入向量 x 逐元素相乘,得到最终的输出向量。

GLU线性门控单元的特点是能够对输入向量进行选择性地激活,从而增强模型的表达能力。它在Transformer模型的编码器和解码器中广泛应用,用于对输入向量进行非线性变换和特征提取。

需要注意的是,GLU线性门控单元的计算复杂度较高,可能会增加模型的计算开销。因此,在实际应用中,也可以根据具体情况选择其他的非线性变换方式来代替GLU线性门控单元。

5. 使用 GeLU 的 GLU 块 计算公式?

使用GeLU作为激活函数的GLU块的计算公式如下:

G L U ( x ) = x ∗ G e L U ( W 1 ∗ x ) GLU(x) = x * GeLU(W_1 * x) GLU(x)=xGeLU(W1x)

其中,GeLU() 是Gaussian Error Linear Unit的激活函数,W_1 是一个可学习的权重矩阵。

在公式中,首先将输入向量 x 通过一个全连接层(线性变换)得到一个与 x 维度相同的向量,然后将该向量作为输入传递给GeLU激活函数进行非线性变换。最后,将GeLU激活函数的输出与输入向量 x 逐元素相乘,得到最终的输出向量。

GeLU激活函数的计算公式如下:

G e L U ( x ) = 0.5 × x × ( 1 + t a n h ( 2 π × ( x + 0.044715 × x 3 ) ) ) GeLU(x) = 0.5 \times x \times (1 + tanh(\sqrt{\frac{2}{\pi}} \times (x + 0.044715 \times x^3))) GeLU(x)=0.5×x×(1+tanh(π2 ×(x+0.044715×x3)))

其中,tanh() 是双曲正切函数,sqrt() 是平方根函数,$ \pi $是圆周率。

在公式中,GeLU函数首先对输入向量 x 进行一个非线性变换,然后通过一系列的数学运算得到最终的输出值。

使用GeLU作为GLU块的激活函数可以增强模型的非线性能力,并在某些情况下提供更好的性能和更快的收敛速度。这种结构常用于Transformer模型中的编码器和解码器,用于对输入向量进行非线性变换和特征提取。

需要注意的是,GLU块和GeLU激活函数是两个不同的概念,它们在计算公式和应用场景上有所区别。在实际应用中,可以根据具体情况选择合适的激活函数来代替GeLU或GLU。

6. 使用 Swish 的 GLU 块 计算公式?

使用Swish作为激活函数的GLU块的计算公式如下:

G L U ( x ) = x ∗ s i g m o i d ( W 1 ∗ x ) GLU(x) = x * sigmoid(W_1 * x) GLU(x)=xsigmoid(W1x)

其中, s i g m o i d ( ) sigmoid() sigmoid() 是Sigmoid函数, W 1 W_1 W1 是一个可学习的权重矩阵。

在公式中,首先将输入向量 x 通过一个全连接层(线性变换)得到一个与 x 维度相同的向量,然后将该向量通过Sigmoid函数进行激活。这个Sigmoid函数的输出称为门控向量,用来控制输入向量 x 的元素是否被激活。最后,将门控向量与输入向量 x 逐元素相乘,得到最终的输出向量。

Swish激活函数的计算公式如下:

S w i s h ( x ) = x × s i g m o i d ( β ∗ x ) Swish(x) = x \times sigmoid(\beta * x) Swish(x)=x×sigmoid(βx)

其中, s i g m o i d ( ) sigmoid() sigmoid() 是Sigmoid函数, x x x 是输入, β \beta β 是一个可调节的超参数。

在公式中,Swish函数首先对输入向量 x 进行一个非线性变换,然后通过Sigmoid函数进行激活,并将该激活结果与输入向量 x 逐元素相乘,得到最终的输出值。

使用Swish作为GLU块的激活函数可以增强模型的非线性能力,并在某些情况下提供更好的性能和更快的收敛速度。GLU块常用于Transformer模型中的编码器和解码器,用于对输入向量进行非线性变换和特征提取。

需要注意的是,GLU块和Swish激活函数是两个不同的概念,它们在计算公式和应用场景上有所区别。在实际应用中,可以根据具体情况选择合适的激活函数来代替Swish或GLU。

这篇关于[从0开始AIGC][Transformer相关]:Transformer中的激活函数:Relu、GELU、GLU、Swish的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/871410

相关文章

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

CSS3中的字体及相关属性详解

《CSS3中的字体及相关属性详解》:本文主要介绍了CSS3中的字体及相关属性,详细内容请阅读本文,希望能对你有所帮助... 字体网页字体的三个来源:用户机器上安装的字体,放心使用。保存在第三方网站上的字体,例如Typekit和Google,可以link标签链接到你的页面上。保存在你自己Web服务器上的字

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

MySQL 字符串截取函数及用法详解

《MySQL字符串截取函数及用法详解》在MySQL中,字符串截取是常见的操作,主要用于从字符串中提取特定部分,MySQL提供了多种函数来实现这一功能,包括LEFT()、RIGHT()、SUBST... 目录mysql 字符串截取函数详解RIGHT(str, length):从右侧截取指定长度的字符SUBST