pytorch 函数DataLoader

2024-04-02 13:08
文章标签 函数 pytorch dataloader

本文主要是介绍pytorch 函数DataLoader,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Dataset(https://blog.csdn.net/TH_NUM/article/details/80877196)只负责数据的抽象,一次调用getitem只返回一个样本。前面提到过,在训练神经网络时,最好是对一个batch的数据进行操作,同时还需要对数据进行shuffle和并行加速等。对此,PyTorch提供了DataLoader帮助我们实现这些功能。

DataLoader的函数定义如下:

DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, 
num_workers=0, collate_fn=default_collate, pin_memory=False, 
drop_last=False)

dataset:加载的数据集(Dataset对象)
batch_size:batch size
shuffle::是否将数据打乱
sampler: 样本抽样,后续会详细介绍
num_workers:使用多进程加载的进程数,0代表不使用多进程
collate_fn: 如何将多个样本数据拼接成一个batch,一般使用默认的拼接方式即可
pin_memory:是否将数据保存在pin memory区,pin memory中的数据转到GPU会快一些
drop_last:dataset中的数据个数可能不是batch_size的整数倍,drop_last为True会将多出来不足一个batch的数据丢弃

from torchvision.datasets import ImageFolder
import torch
from torchvision import transforms
from torch.utils.data import DataLoader#加上transforms
normalize=transforms.Normalize(mean=[.5,.5,.5],std=[.5,.5,.5])
transform=transforms.Compose([transforms.RandomSizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(), #将图片转换为Tensor,归一化至[0,1]normalize
])dataset=ImageFolder('data/dogcat_2/',transform=transform)#dataloader是一个可迭代的对象,意味着我们可以像使用迭代器一样使用它 或者 or batch_datas, batch_labels in dataloader:
dataloader = DataLoader(dataset, batch_size=3, shuffle=True, num_workers=0, drop_last=False)dataiter = iter(dataloader)
imgs, labels = next(dataiter)
print(imgs.size()) # batch_size, channel, height, weight
#输出 torch.Size([3, 3, 224, 224])

在数据处理中,有时会出现某个样本无法读取等问题,比如某张图片损坏。这时在_ getitem _函数中将出现异常,此时最好的解决方案即是将出错的样本剔除。如果实在是遇到这种情况无法处理,则可以返回None对象,然后在Dataloader中实现自定义的collate_fn,将空对象过滤掉。但要注意,在这种情况下dataloader返回的batch数目会少于batch_size。

'''
在数据处理中,有时会出现某个样本无法读取等问题,比如某张图片损坏。这时在__getitem__函数中将出现异常,此时最好的解决方案即是将出错的样本剔除。如果实在是遇到这种情况无法处理,则可以返回None对象,然后在Dataloader中实现自定义的collate_fn,将空对象过滤掉。但要注意,在这种情况下dataloader返回的batch数目会少于batch_size。
'''
from dataSet import *
import random
class NewDogCat(DogCat): # 继承前面实现的DogCat数据集def __getitem__(self, index):try:# 调用父类的获取函数,即 DogCat.__getitem__(self, index)return super(NewDogCat,self).__getitem__(index)except:#对于诸如样本损坏或数据集加载异常等情况,还可以通过其它方式解决。例如但凡遇到异常情况,就随机取一张图片代替:new_index = random.randint(0, len(self) - 1)return self[new_index]from torch.utils.data.dataloader import default_collate # 导入默认的拼接方式
from torch.utils.data import DataLoader
def my_collate_fn(batch):'''batch中每个元素形如(data, label)'''# 过滤为None的数据batch = list(filter(lambda x:x[0] is not None, batch))if len(batch) == 0: return torch.Tensor()return default_collate(batch) # 用默认方式拼接过滤后的batch数据transform=transforms.Compose([transforms.Resize(224), #缩放图片,保持长宽比不变,最短边的长为224像素,transforms.CenterCrop(224), #从中间切出 224*224的图片transforms.ToTensor(), #将图片转换为Tensor,归一化至[0,1]transforms.Normalize(mean=[.5,.5,.5],std=[.5,.5,.5]) #标准化至[-1,1]
])dataset = NewDogCat(root='data/dogcat_wrong/', transform=transform)#print(dataSet[11])
dataloader = DataLoader(dataset, 2, collate_fn=my_collate_fn, num_workers=1,shuffle=True)
for batch_datas, batch_labels in dataloader:print(batch_datas.size(),batch_labels.size())

github 地址:https://github.com/WebLearning17/CommonTool

参考:https://github.com/chenyuntc/pytorch-book/blob/master/chapter5-%E5%B8%B8%E7%94%A8%E5%B7%A5%E5%85%B7/chapter5.ipynb

这篇关于pytorch 函数DataLoader的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/870066

相关文章

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段

Django中的函数视图和类视图以及路由的定义方式

《Django中的函数视图和类视图以及路由的定义方式》Django视图分函数视图和类视图,前者用函数处理请求,后者继承View类定义方法,路由使用path()、re_path()或url(),通过in... 目录函数视图类视图路由总路由函数视图的路由类视图定义路由总结Django允许接收的请求方法http

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所