pytorch 函数DataLoader

2024-04-02 13:08
文章标签 函数 pytorch dataloader

本文主要是介绍pytorch 函数DataLoader,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Dataset(https://blog.csdn.net/TH_NUM/article/details/80877196)只负责数据的抽象,一次调用getitem只返回一个样本。前面提到过,在训练神经网络时,最好是对一个batch的数据进行操作,同时还需要对数据进行shuffle和并行加速等。对此,PyTorch提供了DataLoader帮助我们实现这些功能。

DataLoader的函数定义如下:

DataLoader(dataset, batch_size=1, shuffle=False, sampler=None, 
num_workers=0, collate_fn=default_collate, pin_memory=False, 
drop_last=False)

dataset:加载的数据集(Dataset对象)
batch_size:batch size
shuffle::是否将数据打乱
sampler: 样本抽样,后续会详细介绍
num_workers:使用多进程加载的进程数,0代表不使用多进程
collate_fn: 如何将多个样本数据拼接成一个batch,一般使用默认的拼接方式即可
pin_memory:是否将数据保存在pin memory区,pin memory中的数据转到GPU会快一些
drop_last:dataset中的数据个数可能不是batch_size的整数倍,drop_last为True会将多出来不足一个batch的数据丢弃

from torchvision.datasets import ImageFolder
import torch
from torchvision import transforms
from torch.utils.data import DataLoader#加上transforms
normalize=transforms.Normalize(mean=[.5,.5,.5],std=[.5,.5,.5])
transform=transforms.Compose([transforms.RandomSizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(), #将图片转换为Tensor,归一化至[0,1]normalize
])dataset=ImageFolder('data/dogcat_2/',transform=transform)#dataloader是一个可迭代的对象,意味着我们可以像使用迭代器一样使用它 或者 or batch_datas, batch_labels in dataloader:
dataloader = DataLoader(dataset, batch_size=3, shuffle=True, num_workers=0, drop_last=False)dataiter = iter(dataloader)
imgs, labels = next(dataiter)
print(imgs.size()) # batch_size, channel, height, weight
#输出 torch.Size([3, 3, 224, 224])

在数据处理中,有时会出现某个样本无法读取等问题,比如某张图片损坏。这时在_ getitem _函数中将出现异常,此时最好的解决方案即是将出错的样本剔除。如果实在是遇到这种情况无法处理,则可以返回None对象,然后在Dataloader中实现自定义的collate_fn,将空对象过滤掉。但要注意,在这种情况下dataloader返回的batch数目会少于batch_size。

'''
在数据处理中,有时会出现某个样本无法读取等问题,比如某张图片损坏。这时在__getitem__函数中将出现异常,此时最好的解决方案即是将出错的样本剔除。如果实在是遇到这种情况无法处理,则可以返回None对象,然后在Dataloader中实现自定义的collate_fn,将空对象过滤掉。但要注意,在这种情况下dataloader返回的batch数目会少于batch_size。
'''
from dataSet import *
import random
class NewDogCat(DogCat): # 继承前面实现的DogCat数据集def __getitem__(self, index):try:# 调用父类的获取函数,即 DogCat.__getitem__(self, index)return super(NewDogCat,self).__getitem__(index)except:#对于诸如样本损坏或数据集加载异常等情况,还可以通过其它方式解决。例如但凡遇到异常情况,就随机取一张图片代替:new_index = random.randint(0, len(self) - 1)return self[new_index]from torch.utils.data.dataloader import default_collate # 导入默认的拼接方式
from torch.utils.data import DataLoader
def my_collate_fn(batch):'''batch中每个元素形如(data, label)'''# 过滤为None的数据batch = list(filter(lambda x:x[0] is not None, batch))if len(batch) == 0: return torch.Tensor()return default_collate(batch) # 用默认方式拼接过滤后的batch数据transform=transforms.Compose([transforms.Resize(224), #缩放图片,保持长宽比不变,最短边的长为224像素,transforms.CenterCrop(224), #从中间切出 224*224的图片transforms.ToTensor(), #将图片转换为Tensor,归一化至[0,1]transforms.Normalize(mean=[.5,.5,.5],std=[.5,.5,.5]) #标准化至[-1,1]
])dataset = NewDogCat(root='data/dogcat_wrong/', transform=transform)#print(dataSet[11])
dataloader = DataLoader(dataset, 2, collate_fn=my_collate_fn, num_workers=1,shuffle=True)
for batch_datas, batch_labels in dataloader:print(batch_datas.size(),batch_labels.size())

github 地址:https://github.com/WebLearning17/CommonTool

参考:https://github.com/chenyuntc/pytorch-book/blob/master/chapter5-%E5%B8%B8%E7%94%A8%E5%B7%A5%E5%85%B7/chapter5.ipynb

这篇关于pytorch 函数DataLoader的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/870066

相关文章

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Python Excel 通用筛选函数的实现

《PythonExcel通用筛选函数的实现》本文主要介绍了PythonExcel通用筛选函数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录案例目的示例数据假定数据来源是字典优化:通用CSV数据处理函数使用说明使用示例注意事项案例目的第一

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N