GPU CUDA编程中threadIdx, blockIdx, blockDim, gridDim之间的区别与联系

本文主要是介绍GPU CUDA编程中threadIdx, blockIdx, blockDim, gridDim之间的区别与联系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在启动kernel的时候,要通过指定gridsize和blocksize才行,举下面的例子说说:
dim3 gridsize(2,2);
dim3 blocksize(4,4);
gridsize相当于是一个2*2的block,gridDim.x,gridDim.y,gridDim.z相当于这个dim3的x,y,z方向的维度,这里是2*2*1。序号从0到3,且是从上到下的顺序,就是说是下面的情况:
grid中的blockidx序号标注情况为:

0	21	3

blocksize则是指里面的thread的情况,blockDim.x,blockDim.y,blockDim.z相当于这个dim3的x,y,z方向的维度,这里是4*4*1.序号是0-15,也是从上到下的标注:
block中的threadidx序号标注情况:

0	4	8	12
1	5	9	13
2	6	10	14
4	7	11	15

具体:
threadIdx是一个uint3类型,表示一个线程的索引。
blockIdx是一个uint3类型,表示一个线程块的索引,一个线程块中通常有多个线程。
blockDim是一个dim3类型,表示线程块的大小。
gridDim是一个dim3类型,表示网格的大小,一个网格中通常有多个线程块。
下面这张图比较清晰的表示的几个概念的关系:
在这里插入图片描述
cuda 通过<<< >>>符号来分配索引线程的方式,我知道的一共有15种索引方式。
在这里插入图片描述

#include "cuda_runtime.h"
#include "device_launch_parameters.h"#include <stdio.h>
#include <stdlib.h>
#include <iostream>using namespace std;//thread 1D
__global__ void testThread1(int *c, const int *a, const int *b)
{int i = threadIdx.x;c[i] = b[i] - a[i];
}
//thread 2D
__global__ void testThread2(int *c, const int *a, const int *b)
{int i = threadIdx.x + threadIdx.y*blockDim.x;c[i] = b[i] - a[i];
}//thread 3D
__global__ void testThread3(int *c, const int *a, const int *b)
{int i = threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.x*blockDim.y;c[i] = b[i] - a[i];
}//block 1D
__global__ void testBlock1(int *c, const int *a, const int *b)
{int i = blockIdx.x;c[i] = b[i] - a[i];
}//block 2D
__global__ void testBlock2(int *c, const int *a, const int *b)
{int i = blockIdx.x + blockIdx.y*gridDim.x;c[i] = b[i] - a[i];
}//block 3D
__global__ void testBlock3(int *c, const int *a, const int *b)
{int i = blockIdx.x + blockIdx.y*gridDim.x + blockIdx.z*gridDim.x*gridDim.y;c[i] = b[i] - a[i];
}//block-thread 1D-1D
__global__ void testBlockThread1(int *c, const int *a, const int *b)
{int i = threadIdx.x + blockDim.x*blockIdx.x;c[i] = b[i] - a[i];
}//block-thread 1D-2D
__global__ void testBlockThread2(int *c, const int *a, const int *b)
{int threadId_2D = threadIdx.x + threadIdx.y*blockDim.x;int i = threadId_2D+ (blockDim.x*blockDim.y)*blockIdx.x;c[i] = b[i] - a[i];
}//block-thread 1D-3D
__global__ void testBlockThread3(int *c, const int *a, const int *b)
{int threadId_3D = threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.x*blockDim.y;int i = threadId_3D + (blockDim.x*blockDim.y*blockDim.z)*blockIdx.x;c[i] = b[i] - a[i];
}//block-thread 2D-1D
__global__ void testBlockThread4(int *c, const int *a, const int *b)
{int blockId_2D = blockIdx.x + blockIdx.y*gridDim.x;int i = threadIdx.x + blockDim.x*blockId_2D;c[i] = b[i] - a[i];
}//block-thread 3D-1D
__global__ void testBlockThread5(int *c, const int *a, const int *b)
{int blockId_3D = blockIdx.x + blockIdx.y*gridDim.x + blockIdx.z*gridDim.x*gridDim.y;int i = threadIdx.x + blockDim.x*blockId_3D;c[i] = b[i] - a[i];
}//block-thread 2D-2D
__global__ void testBlockThread6(int *c, const int *a, const int *b)
{int threadId_2D = threadIdx.x + threadIdx.y*blockDim.x;int blockId_2D = blockIdx.x + blockIdx.y*gridDim.x;int i = threadId_2D + (blockDim.x*blockDim.y)*blockId_2D;c[i] = b[i] - a[i];
}//block-thread 2D-3D
__global__ void testBlockThread7(int *c, const int *a, const int *b)
{int threadId_3D = threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.x*blockDim.y;int blockId_2D = blockIdx.x + blockIdx.y*gridDim.x;int i = threadId_3D + (blockDim.x*blockDim.y*blockDim.z)*blockId_2D;c[i] = b[i] - a[i];
}//block-thread 3D-2D
__global__ void testBlockThread8(int *c, const int *a, const int *b)
{int threadId_2D = threadIdx.x + threadIdx.y*blockDim.x;int blockId_3D = blockIdx.x + blockIdx.y*gridDim.x + blockIdx.z*gridDim.x*gridDim.y;int i = threadId_2D + (blockDim.x*blockDim.y)*blockId_3D;c[i] = b[i] - a[i];
}//block-thread 3D-3D
__global__ void testBlockThread9(int *c, const int *a, const int *b)
{int threadId_3D = threadIdx.x + threadIdx.y*blockDim.x + threadIdx.z*blockDim.x*blockDim.y;int blockId_3D = blockIdx.x + blockIdx.y*gridDim.x + blockIdx.z*gridDim.x*gridDim.y;int i = threadId_3D + (blockDim.x*blockDim.y*blockDim.z)*blockId_3D;c[i] = b[i] - a[i];
}void addWithCuda(int *c, const int *a, const int *b, unsigned int size)
{int *dev_a = 0;int *dev_b = 0;int *dev_c = 0;cudaSetDevice(0);cudaMalloc((void**)&dev_c, size * sizeof(int));cudaMalloc((void**)&dev_a, size * sizeof(int));cudaMalloc((void**)&dev_b, size * sizeof(int));cudaMemcpy(dev_a, a, size * sizeof(int), cudaMemcpyHostToDevice);cudaMemcpy(dev_b, b, size * sizeof(int), cudaMemcpyHostToDevice);testThread1<<<1, size>>>(dev_c, dev_a, dev_b);//testThread1<<<1, size>>>(dev_c, dev_a, dev_b);//uint3 s;s.x = size/5;s.y = 5;s.z = 1;//testThread2 <<<1,s>>>(dev_c, dev_a, dev_b);//uint3 s; s.x = size / 10; s.y = 5; s.z = 2;//testThread3<<<1, s >>>(dev_c, dev_a, dev_b);//testBlock1<<<size,1 >>>(dev_c, dev_a, dev_b);//uint3 s; s.x = size / 5; s.y = 5; s.z = 1;//testBlock2<<<s, 1 >>>(dev_c, dev_a, dev_b);//uint3 s; s.x = size / 10; s.y = 5; s.z = 2;//testBlock3<<<s, 1 >>>(dev_c, dev_a, dev_b);//testBlockThread1<<<size/10, 10>>>(dev_c, dev_a, dev_b);//uint3 s1; s1.x = size / 100; s1.y = 1; s1.z = 1;//uint3 s2; s2.x = 10; s2.y = 10; s2.z = 1;//testBlockThread2 << <s1, s2 >> >(dev_c, dev_a, dev_b);//uint3 s1; s1.x = size / 100; s1.y = 1; s1.z = 1;//uint3 s2; s2.x = 10; s2.y = 5; s2.z = 2;//testBlockThread3 << <s1, s2 >> >(dev_c, dev_a, dev_b);//uint3 s1; s1.x = 10; s1.y = 10; s1.z = 1;//uint3 s2; s2.x = size / 100; s2.y = 1; s2.z = 1;//testBlockThread4 << <s1, s2 >> >(dev_c, dev_a, dev_b);//uint3 s1; s1.x = 10; s1.y = 5; s1.z = 2;//uint3 s2; s2.x = size / 100; s2.y = 1; s2.z = 1;//testBlockThread5 << <s1, s2 >> >(dev_c, dev_a, dev_b);//uint3 s1; s1.x = size / 100; s1.y = 10; s1.z = 1;//uint3 s2; s2.x = 5; s2.y = 2; s2.z = 1;//testBlockThread6 << <s1, s2 >> >(dev_c, dev_a, dev_b);//uint3 s1; s1.x = size / 100; s1.y = 5; s1.z = 1;//uint3 s2; s2.x = 5; s2.y = 2; s2.z = 2;//testBlockThread7 << <s1, s2 >> >(dev_c, dev_a, dev_b);//uint3 s1; s1.x = 5; s1.y = 2; s1.z = 2;//uint3 s2; s2.x = size / 100; s2.y = 5; s2.z = 1;//testBlockThread8 <<<s1, s2 >>>(dev_c, dev_a, dev_b);//uint3 s1; s1.x = 5; s1.y = 2; s1.z = 2;//uint3 s2; s2.x = size / 200; s2.y = 5; s2.z = 2;//testBlockThread9<<<s1, s2 >>>(dev_c, dev_a, dev_b);cudaMemcpy(c, dev_c, size*sizeof(int), cudaMemcpyDeviceToHost);cudaFree(dev_a);cudaFree(dev_b);cudaFree(dev_c);cudaGetLastError();}
int main()
{const int n = 1000;int *a = new int[n];int *b = new int[n];int *c = new int[n];int *cc = new int[n];for (int i = 0; i < n; i++){a[i] = rand() % 100;b[i] = rand() % 100;c[i] = b[i] - a[i];}addWithCuda(cc, a, b, n);for (int i = 0; i < n; i++)printf("%d %d\n", c[i], cc[i]);delete[] a;delete[] b;delete[] c;delete[] cc; return 0;}

参考:https://www.cnblogs.com/rainbow70626/p/6498738.html?utm_source=itdadao&utm_medium=referral

https://www.cnblogs.com/tiandsp/p/9458734.html

这篇关于GPU CUDA编程中threadIdx, blockIdx, blockDim, gridDim之间的区别与联系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/870048

相关文章

Go语言中make和new的区别及说明

《Go语言中make和new的区别及说明》:本文主要介绍Go语言中make和new的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 概述2 new 函数2.1 功能2.2 语法2.3 初始化案例3 make 函数3.1 功能3.2 语法3.3 初始化

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

Before和BeforeClass的区别及说明

《Before和BeforeClass的区别及说明》:本文主要介绍Before和BeforeClass的区别及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Before和BeforeClass的区别一个简单的例子当运行这个测试类时总结Before和Befor

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p