《挑战程序设计竞赛》3.2.2 常用技巧-反转 POJ3276 3279 3185 1222

本文主要是介绍《挑战程序设计竞赛》3.2.2 常用技巧-反转 POJ3276 3279 3185 1222,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

POJ3276

http://poj.org/problem?id=3276

题意

N头牛排成一列1<=N<=5000。每头牛或者向前(表示为F)或者向后(表示为B)。为了让所有牛都面向前方,农夫每次可以将K头连续的牛转向1<=K<=N,求操作的最少次数M和对应的最小K。

思路

所有情况穷举O(2^N)肯定超时。
顺序考虑每头牛的反转方向能不能行呢?因为想改变一头牛的方向就必定影响k头牛,但再思考一下,当一头牛被反转2的倍数次时,与初始方向相同,可视为无反转,所以对于每头牛来说,只有被反转和未反转两种操作。
但我们要枚举的是大小为K的区间的反转,顺序考虑时每个区间的反转状态可以被前面的状态所确定,这时候最坏情况下复杂度O(N^3)。这里可以用sum来记录前面的反转状态和,从而将复杂度降到O(N^2),具体见代码。
此题值得注意的地方:
(1)判断条件很容易出错,需要考虑清楚n和k的所有情况,我因为没写好判断,WA了两次。
(2)这个题中二进制的妙用可在代码中细细体会。
(3)用bool存储似乎能进一步缩减内存使用,当然代码需要同步优化。

代码

Source CodeProblem: 3276       User: liangrx06
Memory: 276K        Time: 360MS
Language: C++       Result: Accepted
Source Code
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;const int N = 5000;int main(void)
{int n;int f[N], t[N];cin >> n;char c[2];for (int i = 0; i < n; i ++) {scanf("%s", c);if (c[0] == 'F')f[i] = 0;elsef[i] = 1;}int ansm = n, ansk = 1;for (int k = 1; k <= n; k ++) {int m = 0;int sum = 0;for (int i = 0; i <= n-k; i ++) {t[i] = (f[i] + sum)&1;m += t[i];sum += t[i];if (i-k+1 >= 0) sum += t[i-k+1];}int flag = 1;for (int i = n-k+1; i < n; i ++) {if ( ((f[i] + sum)&1) == 1)flag = 0;if (i-k+1 >= 0) sum += t[i-k+1];}if (flag == 1 && m < ansm) {ansm = m;ansk = k;}}printf("%d %d\n", ansk, ansm);return 0;
}

POJ3279

http://poj.org/problem?id=3279

题意

一个m*n的01矩阵,每次点击(x,y),那么她的上下左右以及本身就会0变1,1变0,问把矩阵变成全0的,最小需要点击多少步。如果有多个符合条件,求字典序最小的。

思路

枚举第一行翻转情况,2^m,然后验证,由于第一行确定了,后面就可以跟着确定了。
这个题看似思路清晰,实际做的过程中却出了不少错误,比如:
(1)字典序弄反了;
(2)应该验证最后一行,结果想错了;
(3)最优解首先要求的是最小步数,而不是字典序最小,我把顺序弄反了。
代码最终基本和书中例题一样了。

代码

Source CodeProblem: 3279       User: liangrx06
Memory: 248K        Time: 547MS
Language: C++       Result: Accepted
Source Code
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;const int N = 15;int m, n;
int f0[N][N], f[N][N], t[N][N], opt[N][N];
int d[5][2] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}, {0, 0}};void flip(int i, int j)
{if (t[i][j] == 0) return;for (int k = 0; k < 5; k ++) {int ii = i+d[k][0];int jj = j+d[k][1];if (0 <= ii && ii < m && 0 <= jj && jj < n)f[ii][jj] = (f[ii][jj]+1) & 1;}
}int main(void)
{cin >> m >> n;for (int i = 0; i < m; i ++)for (int j = 0; j < n; j ++)scanf("%d", &f0[i][j]);int minfcount = n*m+1;for (int r = 0; r < (1<<n); r ++) {int fcount = 0;memcpy(f, f0, sizeof(f));for (int j = 0; j < n; j ++) {t[0][n-1-j] = (r>>j)&1;fcount += t[0][n-1-j];flip(0, n-1-j);}for (int i = 1; i < m; i ++) {for (int j = 0; j < n; j ++) {t[i][j] = f[i-1][j];fcount += t[i][j];flip(i, j);/*printf("i=%d, j=%d==========\n", i, j);if (t[i][j]) {for (int ii = 0; ii < m; ii ++)for (int jj = 0; jj < n; jj ++)printf("%d%c", f[ii][jj], (jj == n-1) ? '\n' : ' ');}*/}}bool flag = true;for (int j = 0; j < n; j ++) {if (f[m-1][j] == 1) {flag = false; break;}}if (flag == true && fcount < minfcount) {minfcount = fcount;memcpy(opt, t, sizeof(t));}}if (minfcount == n*m+1)printf("IMPOSSIBLE\n");else {for (int i = 0; i < m; i ++)for (int j = 0; j < n; j ++)printf("%d%c", opt[i][j], (j == n-1) ? '\n' : ' ');}return 0;
}

POJ3185

http://poj.org/problem?id=3185

题意

将一列碗(20个)翻成口朝上,一把下去可能同时反转3个或2个(首尾),求最小翻转次数。

思路

应该说是3276题的简单版,只有两种情况需要考虑:以第一个为中心的反转是否做。后续的反转据此可以确定,然后检验是否符合条件即可。

代码

Source CodeProblem: 3185       User: liangrx06
Memory: 164K        Time: 0MS
Language: C++       Result: Accepted
Source Code
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;const int n = 20;
int f0[n], f[n], t[n];void flip(int x)
{if (!t[x]) return;f[x] = (f[x]+1)&1;if (x > 0) f[x-1] = (f[x-1]+1)&1;if (x < n-1) f[x+1] = (f[x+1]+1)&1;
}int main(void)
{for (int i = 0; i < n; i ++)scanf("%d", &f0[i]);int best = n;for (int k = 0; k < 2; k ++) {memcpy(f, f0, sizeof(f));t[0] = k;int cnt = t[0];flip(0);for (int i = 1; i < n; i ++) {t[i] = f[i-1];cnt += t[i];flip(i);}if (f[n-1] == 0) {best = min(cnt, best);}}printf("%d\n", best);return 0;
}

POJ1222

http://poj.org/problem?id=1222

题意

poj3279的简单版,详见上文。
这个题固定了行列,而且只需要任意求一个答案就可以。

思路

直接把3279代码拿过来稍作修改即可。

代码

Source CodeProblem: 1222       User: liangrx06
Memory: 244K        Time: 16MS
Language: C++       Result: Accepted
Source Code
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;const int N = 6;int m = 5, n = 6;
int f0[N][N], f[N][N], t[N][N], opt[N][N];
int d[5][2] = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}, {0, 0}};void flip(int i, int j)
{if (t[i][j] == 0) return;for (int k = 0; k < 5; k ++) {int ii = i+d[k][0];int jj = j+d[k][1];if (0 <= ii && ii < m && 0 <= jj && jj < n)f[ii][jj] = (f[ii][jj]+1) & 1;}
}int main(void)
{int casecount;cin >> casecount;for (int puzzle = 1; puzzle <= casecount; puzzle ++) {for (int i = 0; i < m; i ++)for (int j = 0; j < n; j ++)scanf("%d", &f0[i][j]);int minfcount = n*m+1;for (int r = 0; r < (1<<n); r ++) {int fcount = 0;memcpy(f, f0, sizeof(f));for (int j = 0; j < n; j ++) {t[0][n-1-j] = (r>>j)&1;fcount += t[0][n-1-j];flip(0, n-1-j);}for (int i = 1; i < m; i ++) {for (int j = 0; j < n; j ++) {t[i][j] = f[i-1][j];fcount += t[i][j];flip(i, j);}}bool flag = true;for (int j = 0; j < n; j ++) {if (f[m-1][j] == 1) {flag = false; break;}}if (flag == true && fcount < minfcount) {minfcount = fcount;memcpy(opt, t, sizeof(t));break;}}printf("PUZZLE #%d\n", puzzle);for (int i = 0; i < m; i ++)for (int j = 0; j < n; j ++)printf("%d%c", opt[i][j], (j == n-1) ? '\n' : ' ');}return 0;
}

这篇关于《挑战程序设计竞赛》3.2.2 常用技巧-反转 POJ3276 3279 3185 1222的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/868683

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

如何在Mac上彻底删除Edge账户? 手动卸载Edge浏览器并清理残留文件技巧

《如何在Mac上彻底删除Edge账户?手动卸载Edge浏览器并清理残留文件技巧》Mac上的Edge账户里存了不少网站密码和个人信息,结果同事一不小心打开了,简直尴尬到爆炸,想要卸载edge浏览器并清... 如果你遇到 Microsoft Edge 浏览器运行迟缓、频繁崩溃或网页加载异常等问题,可以尝试多种方

gitlab安装及邮箱配置和常用使用方式

《gitlab安装及邮箱配置和常用使用方式》:本文主要介绍gitlab安装及邮箱配置和常用使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1.安装GitLab2.配置GitLab邮件服务3.GitLab的账号注册邮箱验证及其分组4.gitlab分支和标签的

qt5cored.dll报错怎么解决? 电脑qt5cored.dll文件丢失修复技巧

《qt5cored.dll报错怎么解决?电脑qt5cored.dll文件丢失修复技巧》在进行软件安装或运行程序时,有时会遇到由于找不到qt5core.dll,无法继续执行代码,这个问题可能是由于该文... 遇到qt5cored.dll文件错误时,可能会导致基于 Qt 开发的应用程序无法正常运行或启动。这种错

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

mtu设置多少网速最快? 路由器MTU设置最佳网速的技巧

《mtu设置多少网速最快?路由器MTU设置最佳网速的技巧》mtu设置多少网速最快?想要通过设置路由器mtu获得最佳网速,该怎么设置呢?下面我们就来看看路由器MTU设置最佳网速的技巧... 答:1500 MTU值指的是在网络传输中数据包的最大值,合理的设置MTU 值可以让网络更快!mtu设置可以优化不同的网

python判断文件是否存在常用的几种方式

《python判断文件是否存在常用的几种方式》在Python中我们在读写文件之前,首先要做的事情就是判断文件是否存在,否则很容易发生错误的情况,:本文主要介绍python判断文件是否存在常用的几种... 目录1. 使用 os.path.exists()2. 使用 os.path.isfile()3. 使用