pytorch教程之自动求导机制(AUTOGRAD)-从梯度和Jacobian矩阵讲起

2024-04-02 01:38

本文主要是介绍pytorch教程之自动求导机制(AUTOGRAD)-从梯度和Jacobian矩阵讲起,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


文章目录

  • 1. 梯度和Jacobian矩阵
  • 2. pytorch求变量导数的过程

1. 梯度和Jacobian矩阵

f ( x ) ∈ R 1 f(x)\in R^1 f(x)R1是关于向量 x ∈ R n x\in R^n xRn的函数,则它关于 x x x的导数定义为:
d f ( x ) d x : = [ ∂ f ( x ) ∂ x i ] ∈ R n (1-1) \frac{df(x)}{dx}:=\left[\frac{\partial f(x)}{\partial x_i}\right]\in R^{n}\tag{1-1} dxdf(x):=[xif(x)]Rn(1-1)
函数 f ( x ) ∈ R 1 f(x)\in R^1 f(x)R1关于向量 x ∈ R n x\in R^n xRn的导数是一个列向量,称之为 f ( x ) f(x) f(x)关于 x x x的梯度。
d f ( x ) T d x : = ( d f ( x ) d x ) T = [ ∂ f ( x ) ∂ x i ] T ∈ R 1 × n (1-2) \frac{df(x)^T}{dx}:=\left(\frac{df(x)}{dx}\right)^T=\left[\frac{\partial f(x)}{\partial x_i}\right]^T\in R^{1\times n}\tag{1-2} dxdf(x)T:=(dxdf(x))T=[xif(x)]TR1×n(1-2)
如果 f ( x ) ∈ R M f(x)\in R^M f(x)RM是关于向量 x ∈ R n x\in R^n xRn的函数向量,则 f ( x ) f(x) f(x)关于 x x x的导数定义为:
d f ( x ) d x : = d f ( x ) d x T = [ ∂ f ( x ) ∂ x 1 , ∂ f ( x ) ∂ x 2 , ⋯ , ∂ f ( x ) ∂ x n ] ∈ R m × n (1-3) \frac{df(x)}{dx}:=\frac{df(x)}{dx^T}=\left[\frac{\partial f(x)}{\partial x_1},\frac{\partial f(x)}{\partial x_2},\cdots,\frac{\partial f(x)}{\partial x_n}\right]\in R^{m\times n}\tag{1-3} dxdf(x):=dxTdf(x)=[x1f(x),x2f(x),,xnf(x)]Rm×n(1-3)
称上述矩阵为Jacobian矩阵。
一些常用推论:

  1. 假设 v , x ∈ R n v,x\in R^n v,xRn:
    d d x ( v T x ) = d d x ( x T v ) = v (1-4) \frac{d}{dx}(v^Tx)=\frac{d}{dx}(x^Tv)=v\tag{1-4} dxd(vTx)=dxd(xTv)=v(1-4)
  2. 假设 y ∈ R 1 y\in R^1 yR1, z ∈ R m z\in R^m zRm, x ∈ R n x\in R^n xRn, z = g ( x ) z=g(x) z=g(x),y=f(z):
    d y d x = ( d z d x ) T d y d z (1-5) \frac{dy}{dx}=\left(\frac{dz}{dx}\right)^T\frac{dy}{dz}\tag{1-5} dxdy=(dxdz)Tdzdy(1-5)
    可以从向量矩阵的维度适配上去理解和记忆,因为 d y d x ∈ R n \frac{dy}{dx}\in R^n dxdyRn, d y d z ∈ R m \frac{dy}{dz}\in R^m dzdyRm, d z d x ∈ R m × n \frac{dz}{dx}\in R^{m\times n} dxdzRm×n,所以必须有上述的公式才能适配。
  3. 假设 y ∈ R k y\in R^k yRk, z ∈ R m z\in R^m zRm, x ∈ R 1 x\in R^1 xR1, z = g ( x ) z=g(x) z=g(x),y=f(z):
    d y d x = d y d z d z d x (1-6) \frac{dy}{dx}=\frac{dy}{dz}\frac{dz}{dx}\tag{1-6} dxdy=dzdydxdz(1-6)
  4. 假设 y ∈ R k y\in R^k yRk, z ∈ R m z\in R^m zRm, x ∈ R n x\in R^n xRn, z = g ( x ) z=g(x) z=g(x),y=f(z):
    d y d x = d y d z d z d x (1-7) \frac{dy}{dx}=\frac{dy}{dz}\frac{dz}{dx}\tag{1-7} dxdy=dzdydxdz(1-7)

2. pytorch求变量导数的过程

在pytorch和TensorFlow中,是不支持张量对张量的求导。这不是因为数学上没法求,而是因为工程实现上比较麻烦。因为向量对向量求导是个矩阵,二阶张量(矩阵)对二阶张量(矩阵)求导得到一个四阶张量,这样很容易会产生阶数爆炸。所以pytorch和TensorFlow(猜测其他深度学习框架也是这样)对外的接口干脆不支持张量对张量求导。如果遇到张量对张量求导的情况,例如向量对向量求导的情况,需要对因变量乘以一个维度一样的向量,转换为标量对向量的求导,这样可以大大减少计算量(具体见后文)。并且,因为pytorch和TensorFlow是为了机器学习/深度学习模型设计的,机器学习/深度模型的求导基本上都是损失函数(标量)对参数的求导,很少直接用到向量对向量求导,因此上述过程是有实际意义和需求的。

假设有一个三维tensor x = [ x 1 , x 2 , x 3 ] T = [ 1 , 2 , 3 ] T x=[x_1,x_2,x_3]^T=[1,2,3]^T x=[x1,x2,x3]T=[1,2,3]T,另一个三维tensor y:
y = f ( x ) = [ x 1 3 + 2 x 2 2 + 3 x 3 3 x 1 + 2 x 2 2 + x 3 3 2 x 1 + x 2 3 + 3 x 3 2 ] (2-1) y=f(x)= \begin{bmatrix} {x_1}^3+2{x_2}^2+3x_3 \\ 3x_1+2{x_2}^2+{x_3}^3\\ 2x_1+{x_2}^3+3{x_3}^2 \end{bmatrix} \tag{2-1} y=f(x)=x13+2x22+3x33x1+2x22+x332x1+x23+3x32(2-1)
那么在计算y相对于x的导数时,
d y d x = [ 3 x 1 2 , 4 x 2 , 3 3 , 4 x 2 , 3 x 3 2 2 , 3 x 2 2 , 6 x 3 ] (2-2) \frac{dy}{dx}= \begin{bmatrix} &3{x_1}^2,&4x_2,&3 \\ &3,&4{x_2},&3{x_3}^2\\ &2,&3{x_2}^2,&6{x_3} \end{bmatrix} \tag{2-2} dxdy=3x12,3,2,4x2,4x2,3x22,33x326x3(2-2)
在pytorch中实际计算时,不能直接用y对x求导,需要先用一个向量 w w w左乘y,再转置。例如, w T = [ 3 , 2 , 1 ] w^T=[3,2,1] wT=[3,2,1]。因此,pytorch算的其实是:
d y T d x w = ( w T d y d x ) T = [ 17 52 81 ] (2-3) \frac{dy^T}{dx}w= \left(w^T\frac{dy}{dx}\right)^T =\begin{bmatrix} 17\\ 52\\ 81\\ \end{bmatrix} \tag{2-3} dxdyTw=(wTdxdy)T=175281(2-3)
w w w可以理解为是对 [ ∂ y 1 ∂ x , ∂ y 2 ∂ x , ∂ y 3 ∂ x ] T [\frac{\partial y_1}{\partial x},\frac{\partial y_2}{\partial x},\frac{\partial y_3}{\partial x}]^T [xy1,xy2,xy3]T的权重参数。因此我们得到的是y的各个分量的导数的加权求和。

代码如下:

import torch
x1=torch.tensor(1, requires_grad=True, dtype = torch.float)
x2=torch.tensor(2, requires_grad=True, dtype = torch.float)
x3=torch.tensor(3, requires_grad=True, dtype = torch.float)
y=torch.randn(3)
y[0]=x1**3+2*x2**2+3*x3
y[1]=3*x1+2*x2**2+x3**3
y[2]=2*x1+x2**3+3*x3**2
v=torch.tensor([3,2,1],dtype=torch.float)
y.backward(v)
print(x1.grad)
print(x2.grad)
print(x3.grad)

利用链式求导的原理来理解,可以理解为 w w w是(远方)某个标量对 y y y的导数。pytorch之所以要这么设计,是因为在机器学习/深度学习模型中,求导的最终目的一般是为了让损失函数最小。损失函数一般都是一个标量,因此无论链式求导的过程多么复杂,中间过程也许有很多向量对向量求导的子过程,但是最开始一定会有一个标量(损失函数)对向量的求导过程,这个导数就是前面的 w w w

下面看一个带两个隐藏层的神经网络解决线性回归问题的例子,来进一步说明这点。
为了简单起见,考虑batch_size=1的情况。设输入数据为 x = [ x 1 , x 2 ] T x=[x_1,x_2]^T x=[x1,x2]T,输入层到第一个隐藏层的权重矩阵为
W = [ w 1 T w 2 T ] = [ w 11 , w 12 w 21 , w 22 ] (2-4) W=\begin{bmatrix} w_1^T\\ w_2^T \end{bmatrix} = \begin{bmatrix} w_{11},w_{12}\\ w_{21},w_{22}\\ \end{bmatrix} \tag{2-4} W=[w1Tw2T]=[w11,w12w21,w22](2-4)
第一个隐藏层的值为 z = [ z 1 , z 2 ] T z=[z_1,z_2]^T z=[z1,z2]T,
第一个隐藏层到第二个隐藏层的权重矩阵为
U = [ u 1 T u 2 T ] = [ u 11 , u 12 u 21 , u 22 ] (2-5) U=\begin{bmatrix} u_1^T\\ u_2^T \end{bmatrix} = \begin{bmatrix} u_{11},u_{12}\\ u_{21},u_{22}\\ \end{bmatrix} \tag{2-5} U=[u1Tu2T]=[u11,u12u21,u22](2-5)
第二个隐藏层的值为 s = [ s 1 , s 2 ] T s=[s_1,s_2]^T s=[s1,s2]T,
输出层的值为 y y y,隐藏层到输出层的权重参数为 v = [ v 1 , v 2 ] T v=[v_1,v_2]^T v=[v1,v2]T。则有:
z = [ z 1 z 2 ] = [ w 11 , w 12 w 21 , w 22 ] [ x 1 x 2 ] = [ w 11 x 1 + w 12 x 2 w 21 x 1 + w 22 x 2 ] (2-6) z=\begin{bmatrix} z_1\\ z_2\\ \end{bmatrix}= \begin{bmatrix} w_{11},w_{12}\\ w_{21},w_{22}\\ \end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ \end{bmatrix}= \begin{bmatrix} w_{11}x_1+w_{12}x_2\\ w_{21}x_1+w_{22}x_2\\ \end{bmatrix}\tag{2-6} z=[z1z2]=[w11,w12w21,w22][x1x2]=[w11x1+w12x2w21x1+w22x2](2-6)

s = [ s 1 s 2 ] = [ u 11 , u 12 u 21 , u 22 ] [ z 1 z 2 ] = [ u 11 ( w 11 x 1 + w 12 x 2 ) + u 12 ( w 21 x 1 + w 22 x 2 ) u 21 ( w 11 x 1 + w 12 x 2 ) + u 22 ( w 21 x 1 + w 22 x 2 ) ] (2-7) \begin{aligned} s&=\begin{bmatrix} s_1\\ s_2\\ \end{bmatrix}= \begin{bmatrix} u_{11},u_{12}\\ u_{21},u_{22}\\ \end{bmatrix}\begin{bmatrix} z_1\\ z_2\\ \end{bmatrix}\\ &= \begin{bmatrix} u_{11}(w_{11}x_1+w_{12}x_2)+u_{12}(w_{21}x_1+w_{22}x_2)\\ u_{21}(w_{11}x_1+w_{12}x_2)+u_{22}(w_{21}x_1+w_{22}x_2)\\ \end{bmatrix}\tag{2-7} \end{aligned} s=[s1s2]=[u11,u12u21,u22][z1z2]=[u11(w11x1+w12x2)+u12(w21x1+w22x2)u21(w11x1+w12x2)+u22(w21x1+w22x2)](2-7)

y = [ v 1 , v 2 ] [ s 1 s 2 ] = ( v 1 u 11 x 1 + v 2 u 21 x 1 ) w 11 + ( v 1 u 11 x 2 + v 2 u 21 x 2 ) w 12 + ( v 1 u 12 x 1 + v 2 u 22 x 1 ) w 21 + ( v 1 u 12 x 2 + v 2 u 22 x 2 ) w 22 (2-8) \begin{aligned} y&= [v_1,v_2]\begin{bmatrix} s_1\\ s_2\\ \end{bmatrix}\\ &=(v_1u_{11}x_1+v_2u_{21}x_1)w_{11}\\ &+(v_1u_{11}x_2+v_2u_{21}x_2)w_{12}\\ &+(v_1u_{12}x_1+v_2u_{22}x_1)w_{21}\\ &+(v_1u_{12}x_2+v_2u_{22}x_2)w_{22} \end{aligned}\tag{2-8} y=[v1,v2][s1s2]=(v1u11x1+v2u21x1)w11+(v1u11x2+v2u21x2)w12+(v1u12x1+v2u22x1)w21+(v1u12x2+v2u22x2)w22(2-8)
损失函数为 L = ( y − y ^ ) 2 / 2 L=(y-\hat y)^2/2 L=(yy^)2/2
则损失函数关于权重参数 w 1 w_1 w1的导数为:
d L d w 1 = ( y − y ^ ) d y d x = ( y − y ^ ) d s T d x d y d s = ( y − y ^ ) d z T d x d s T d z d y d s = ( y − y ^ ) [ x 1 , 0 x 2 , 0 ] [ u 11 , u 21 u 12 , u 22 ] [ v 1 v 2 ] = ( y − y ^ ) [ v 1 x 1 u 11 + v 2 x 1 u 21 v 1 x 2 u 11 + v 2 x 2 u 21 ] (2-9) \begin{aligned} \frac{dL}{dw_1}&=(y-\hat y)\frac{dy}{dx}\\ &=(y-\hat y)\frac{ds^T}{dx}\frac{dy}{ds}\\ &=(y-\hat y)\frac{dz^T}{dx}\frac{ds^T}{dz}\frac{dy}{ds}\\ &=(y-\hat y)\begin{bmatrix} x_1,0\\ x_2,0\\ \end{bmatrix} \begin{bmatrix} u_{11},u_{21}\\ u_{12},u_{22}\\ \end{bmatrix} \begin{bmatrix} v_1\\ v_2 \end{bmatrix}\\ &=(y-\hat y)\begin{bmatrix} v_1x_1u_{11}+v_2x_1u_{21}\\ v_1x_2u_{11}+v_2x_2u_{21} \end{bmatrix}\\ \end{aligned}\tag{2-9} dw1dL=(yy^)dxdy=(yy^)dxdsTdsdy=(yy^)dxdzTdzdsTdsdy=(yy^)[x1,0x2,0][u11,u21u12,u22][v1v2]=(yy^)[v1x1u11+v2x1u21v1x2u11+v2x2u21](2-9)
可以验证 ( 2 − 9 ) (2-9) (29)和前面 ( 2 − 8 ) (2-8) (28)中直接求得的导数值是一样的。
这里发现了一个小彩蛋:
假设在pytorch的底层实现中,如果从左往右计算,则需要进行进行大量的矩阵乘法。如果有n个 2 × 2 2\times 2 2×2的方阵相乘,那么需要进行 4 × ( n − 1 ) 4\times (n-1) 4×(n1)次内积。如果从又往左计算,只需要进行 2 × n 2\times n 2×n次内积。

这篇关于pytorch教程之自动求导机制(AUTOGRAD)-从梯度和Jacobian矩阵讲起的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/868652

相关文章

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

Maven 配置中的 <mirror>绕过 HTTP 阻断机制的方法

《Maven配置中的<mirror>绕过HTTP阻断机制的方法》:本文主要介绍Maven配置中的<mirror>绕过HTTP阻断机制的方法,本文给大家分享问题原因及解决方案,感兴趣的朋友一... 目录一、问题场景:升级 Maven 后构建失败二、解决方案:通过 <mirror> 配置覆盖默认行为1. 配置示

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Python使用smtplib库开发一个邮件自动发送工具

《Python使用smtplib库开发一个邮件自动发送工具》在现代软件开发中,自动化邮件发送是一个非常实用的功能,无论是系统通知、营销邮件、还是日常工作报告,Python的smtplib库都能帮助我们... 目录代码实现与知识点解析1. 导入必要的库2. 配置邮件服务器参数3. 创建邮件发送类4. 实现邮件

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

CnPlugin是PL/SQL Developer工具插件使用教程

《CnPlugin是PL/SQLDeveloper工具插件使用教程》:本文主要介绍CnPlugin是PL/SQLDeveloper工具插件使用教程,具有很好的参考价值,希望对大家有所帮助,如有错... 目录PL/SQL Developer工具插件使用安装拷贝文件配置总结PL/SQL Developer工具插

Java中的登录技术保姆级详细教程

《Java中的登录技术保姆级详细教程》:本文主要介绍Java中登录技术保姆级详细教程的相关资料,在Java中我们可以使用各种技术和框架来实现这些功能,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录1.登录思路2.登录标记1.会话技术2.会话跟踪1.Cookie技术2.Session技术3.令牌技