深度学习训练中的种子设置

2024-04-01 20:04

本文主要是介绍深度学习训练中的种子设置,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


文章目录

  • 深度学习训练中的种子设置
    • 1. 为什么需要设置随机种子
    • 2. 随机种子的设置及使用


深度学习训练中的种子设置

1. 为什么需要设置随机种子

在神经网络训练过程中,经常会通过随机的方式对一些数据进行初始化:

1、随机权重,网络有些部分的权重没有预训练,它的值则是随机初始化的,每次随机初始化不同会导致结果不同。
2、随机数据增强,一般来讲网络训练会进行数据增强,特别是少量数据的情况下,数据增强一般会随机变化光照、对比度、扭曲等,也会导致结果不同。
3、随机数据读取,喂入训练数据的顺序也会影响结果。

如果每次的实验都进行随机操作,那么实验的结果也会具有随机性,即相同的训练数据,相同的超参数,但是最终的结果可能会相差好几个百分点。

如何解决随机带来的问题呢?即,使得我们每次实验具有可复现性?

在计算机中的随机,其实不是真随机,都是伪随机,通过设置一个随机数种子,就能使得每次随机产生的结果都相同。

2. 随机种子的设置及使用

一般训练会用到多个库包含有关random的内容。

在pytorch构建的网络中,一般都是使用下面三个库来获得随机数,我们需要对三个库都设置随机种子:
1、torch库;
2、numpy库;
3、random库。

通常只会在两个地方使用这些random操作:初始化操作和数据加载操作,只需要在这两个操作之前对种子进行设置即可。

#---------------------------------------------------#
#   设置种子
#---------------------------------------------------#
def seed_everything(seed=11):random.seed(seed)np.random.seed(seed)torch.manual_seed(seed)torch.cuda.manual_seed(seed)torch.cuda.manual_seed_all(seed)torch.backends.cudnn.deterministic = Truetorch.backends.cudnn.benchmark = False

在初始化操作之前使用seed_everything()进行种子设置。

torch.backends.cudnn.deterministic=True用于保证CUDA 卷积运算的结果确定。
torch.backends.cudnn.benchmark=False是用于保证数据变化的情况下,减少网络效率的变化。为True的话容易降低网络效率。

Pytorch一般使用Dataloader来加载数据,Dataloader一般会使用多worker加载多进程来加载数据,此时我们需要使用Dataloader自带的worker_init_fn函数初始化Dataloader启动的多进程,这样才能保证多进程数据加载时数据的确定性。

#---------------------------------------------------#
#   设置Dataloader的种子
#---------------------------------------------------#
def worker_init_fn(worker_id, rank, seed):worker_seed = rank + seedrandom.seed(worker_seed)np.random.seed(worker_seed)torch.manual_seed(worker_seed)

小结:

  • 通过设置随机数种子,利用伪随机,使得每次实验具有可复现性
  • 设置种子环节:在初始化参数之前设置随机数种子,在使用Dataloader加载数据时配置worker_seed

参考文章:神经网络学习小记录74——Pytorch 设置随机种子Seed来保证训练结果唯一_pytorch seed-CSDN博客

这篇关于深度学习训练中的种子设置的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/868026

相关文章

linux hostname设置全过程

《linuxhostname设置全过程》:本文主要介绍linuxhostname设置全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录查询hostname设置步骤其它相关点hostid/etc/hostsEDChina编程A工具license破解注意事项总结以RHE

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Qt 设置软件版本信息的实现

《Qt设置软件版本信息的实现》本文介绍了Qt项目中设置版本信息的三种常用方法,包括.pro文件和version.rc配置、CMakeLists.txt与version.h.in结合,具有一定的参考... 目录在运行程序期间设置版本信息可以参考VS在 QT 中设置软件版本信息的几种方法方法一:通过 .pro

PostgreSQL 默认隔离级别的设置

《PostgreSQL默认隔离级别的设置》PostgreSQL的默认事务隔离级别是读已提交,这是其事务处理系统的基础行为模式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一 默认隔离级别概述1.1 默认设置1.2 各版本一致性二 读已提交的特性2.1 行为特征2.2