结构体与位段的定义以及在内存中的存储

2024-04-01 11:20

本文主要是介绍结构体与位段的定义以及在内存中的存储,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

结构体的声明

完全声明

不完全声明

结构体变量的定义和初始化

结构体的嵌套

结构体成员的直接访问和间接访问

结构体的自引用

typedef对结构体类型重命名

结构体内存对齐

对齐规则

练习

为什么存在内存对齐

修改默认对齐数

结构体传参

结构体实现位段

 位段的内存分配

位段例题

使用位段的注意事项:

总结:


结构是⼀些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量,如:
标量、数组、指针,甚至是其他结构体。

结构体的声明

完全声明

描述一个学生:

struct stu {char name[21];char sex[5];char number[12];
};

注意结尾的分号不要忘记

不完全声明

在声明结构体的时候也可以不完全的声明

struct
{int a;char b;float c;
}x;struct
{int a;char b;float c;
}a[20], * p;
上⾯的两个结构在声明的时候省略掉了结构体标签,叫做匿名结构体
那么 p = &x; 合法吗?
编译器会把上面的两个声明当成完全不同的两个类型,所以是非法的。
匿名的结构体类型,如果没有对结构体类型重命名的话,基本上只能使用一次。
最好不要声明匿名结构体

结构体变量的定义和初始化

变量的定义:

struct book {float price;char booknumber[9];}p;
struct book p1;

变量的初始化:

struct book {float price;char booknumber[9];}p = { 23.5, "1234-567" };//顺序初始化
struct book p1 = { .booknumber = "1235-589", .price = 20.5 };//指定顺序初始化

结构体的嵌套

struct node {float price;char nodenumber[5];
};
struct book {float price;char booknumber[9];struct node n;struct node* a;
};
struct book p = { 19.9f, "1222-345", { 3.5f, "11-33" }, NULL };int main() {printf("%0.1f %s %0.1f %s", p.price, p.booknumber, p.n.price, p.n.nodenumber);return 0;
}

结构体成员的直接访问和间接访问
 

1、直接访问:结构体变量.成员名

struct point {int x;int y;
}p;
int main() {p.x = 20;p.y = 30;printf("%d %d", p.x, p.y);
}

2、间接访问:结构体指针 -> 成员名

struct point {int x;int y;
}p = { 20, 30 };
int main() {struct point* ptr = &p;printf("%d %d", ptr->x, ptr->y);
}

结构体的自引用

在结构中包含一个类型为该结构本身的成员是否可以呢?
比如,定义一个链表的节点:
struct Node
{int data;struct Node next;
};
上述代码 仔细分析,其实是不行的,因为一个结构体中再包含⼀个同类型的结构体变量,这样结构体变量的大小就会无穷的大,是不合理的。
正确的自引用方式:
struct Node
{int data;struct Node* next;
};

typedef对结构体类型重命名

typedef struct Node
{int data;struct Node* next;
}Node;

将struct Node类型重命名为了Node

结构体内存对齐

对齐规则

1. 结构体的第一个成员对齐到和结构体变量起始位置偏移量为0的地址处
 2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。
对齐数 = 编译器默认的一个对齐数与改成员变量大小的 较小值
VS中默认对齐数是8
        linux中ggc没有默认对齐数,对齐数是成员自身大小
3.结构体总大小为最大对齐数的整数倍
4.如果嵌套了结构体的情况,嵌套的结构体成员对齐到自己的成员中最大对齐数的整数倍处,结构体的整体大小就是所有最大对齐数(含嵌套结构体中成员的对齐数)的整数倍

练习

1、

struct S1
{char c1;int i;char c2;
};
printf("%d\n", sizeof(struct S1));

2、 结构体嵌套

struct S1
{char c1;int i;char c2;
};
struct S2
{char c1;struct S1 s1;double d;
};
int main() {printf("%d\n", sizeof(struct S2));return 0;
}

结构体S1的大小由题1可知在内存中占12个字节,由上图可知总共占了24个字节,最大对齐数是8,24是8的倍数,所以结构体S2所占内存的大小为24字节

为什么存在内存对齐

1、平台原因

不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定
类型的数据,否则抛出硬件异常。

 2、性能原因

数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要
作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地
址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以
⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两
个8字节内存块中。
总体来说:结构体的内存对齐是 拿空间来换取时间 的做法。
那在设计结构体的时候,我们既要满足对齐,又要节省空间,应该将占用空间小的成员尽可能的集中在一起。
struct S2
{char c1;char c2;int i; 
};

修改默认对齐数

#pragma 这个预处理指令,可以改变编译器的默认对齐数。

只占用了6个字节

结构体在对齐式不合适的时候,我们可以自己更改默认对齐数 


结构体传参

#include <stdio.h>struct point {int x;int y;
}a;void print(struct point* p) {printf("%d\n", p->x);
}int main() {a.x = 20;print(&a);return 0;
}
结构体传参的时候,要传结构体的地址。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递一个结构体对象的时候, 结构体过大,参数压栈的的系统开销比较大 ,所以会导致性能的下降。

结构体实现位段

位段的声明和结构是类似的,有两个不同
1. 位段的成员必须是 int、unsigned int 或signed int 或者是 char 类型 ,在C99中位段成员的类型也可以 选择其他类型。
2. 位段的成员名后边有一个冒号和一个数字(这个数字表示所占的位)。

 比如:

struct A
{int a:3;int b:5;int c:8;int d:12;
};

 位段的内存分配

 上述结构体中的位段在内存中的分配如下:

 struct A在内存中占了4个字节。

在一个字节中,位是从右往左开始排布,如果一个字节内的所有位排满,则在右边开辟1个字节或4个字节的空间再进行位的排布。

位段例题

#include <stdio.h>
struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};
struct S s = { 0 };
int main() {s.a = 10;s.b = 12;s.c = 3;s.d = 4;printf("%zd\n", sizeof(struct S));return 0;
}

使用位段的注意事项:

1、位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
2、位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
3、位段是用来节省结构体所占内存空间的大小,只能在结构体中实现。
4、 位段的几 个成员共有同一个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位 置处是没有地址的。内存中每个字节分配一个地址,一个字节内部的bit位是没有地址的。
所以不能对位段的成员使用&操作符,这样就不能使用scanf直接给位段的成员输入值,只能是先输入 放在一 个变量中,然后赋值给位段的成员

总结:

跟结构体相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

创作不易,感谢支持~~~

这篇关于结构体与位段的定义以及在内存中的存储的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/867030

相关文章

CSS Anchor Positioning重新定义锚点定位的时代来临(最新推荐)

《CSSAnchorPositioning重新定义锚点定位的时代来临(最新推荐)》CSSAnchorPositioning是一项仍在草案中的新特性,由Chrome125开始提供原生支持需... 目录 css Anchor Positioning:重新定义「锚定定位」的时代来了! 什么是 Anchor Pos

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

MySQL 存储引擎 MyISAM详解(最新推荐)

《MySQL存储引擎MyISAM详解(最新推荐)》使用MyISAM存储引擎的表占用空间很小,但是由于使用表级锁定,所以限制了读/写操作的性能,通常用于中小型的Web应用和数据仓库配置中的只读或主要... 目录mysql 5.5 之前默认的存储引擎️‍一、MyISAM 存储引擎的特性️‍二、MyISAM 的主

Linux lvm实例之如何创建一个专用于MySQL数据存储的LVM卷组

《Linuxlvm实例之如何创建一个专用于MySQL数据存储的LVM卷组》:本文主要介绍使用Linux创建一个专用于MySQL数据存储的LVM卷组的实例,具有很好的参考价值,希望对大家有所帮助,... 目录在Centos 7上创建卷China编程组并配置mysql数据目录1. 检查现有磁盘2. 创建物理卷3. 创

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

SpringBoot项目中Redis存储Session对象序列化处理

《SpringBoot项目中Redis存储Session对象序列化处理》在SpringBoot项目中使用Redis存储Session时,对象的序列化和反序列化是关键步骤,下面我们就来讲讲如何在Spri... 目录一、为什么需要序列化处理二、Spring Boot 集成 Redis 存储 Session2.1

Java内存区域与内存溢出异常的详细探讨

《Java内存区域与内存溢出异常的详细探讨》:本文主要介绍Java内存区域与内存溢出异常的相关资料,分析异常原因并提供解决策略,如参数调整、代码优化等,帮助开发者排查内存问题,需要的朋友可以参考下... 目录一、引言二、Java 运行时数据区域(一)程序计数器(二)Java 虚拟机栈(三)本地方法栈(四)J

基于MongoDB实现文件的分布式存储

《基于MongoDB实现文件的分布式存储》分布式文件存储的方案有很多,今天分享一个基于mongodb数据库来实现文件的存储,mongodb支持分布式部署,以此来实现文件的分布式存储,需要的朋友可以参考... 目录一、引言二、GridFS 原理剖析三、Spring Boot 集成 GridFS3.1 添加依赖