基于YOLOV5+Pyqt5农作物叶片病害检测系统

2024-04-01 10:28

本文主要是介绍基于YOLOV5+Pyqt5农作物叶片病害检测系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、引言

农作物病害的精准检测与识别是推动农业生产智能化与现代化发展的重要举措。随着计算机视觉技术的发展,深度学习方法已得到快速应用,利用卷积神经网络进行农作物病害检测与识别成为近年来研究的热点。基于传统农作物病害识别方法,分析传统方法的弊端所在;立足于农作物病害检测与识别的卷积神经网络模型结构,结合卷积神经网络模型发展和优化历程,针对卷积神经网络在农作物病害检测与识别的具体应用进行分类,从基于公开数据集和自建数据集的农作物病害分类识别、基于双阶段目标检测和单阶段目标检测的农作物病害目标检测以及国外和国内的农作物病害严重程度评估3个方面,对各类卷积神经网络模型研究进展进行综述,对其性能做了对比分析,指出了基于农作物病害检测与识别的卷积神经网络模型当前存在的问题有:公开数据集上识别效果良好的网络模型在自建复杂背景下的数据集上识别效果不理想;基于双阶段目标检测的农作物病害检测算法实时性差,不适于小目标的检测;基于单阶段目标检测的农作物病害检测算法在复杂背景下检测精度较低;复杂大田环境中农作物病害程度评估模型的精度较低。最后对未来研究方向进行了展望:如何获取高质量的农作物病害数据集;如何提升网络的泛化性能;如何提升大田环境中农作物监测性能;如何进行大面积植株受病的范围定位、病害严重程度的评估以及单枝植株的病害预警。

2、系统介绍

基于YOLOv5的深度学习方法:通过数据增强和图像标注技术构建马铃薯、玉米、番茄叶片病害数据集,利用YOLOv5主干网络对病害特征的提取能力,实现叶片病害检测和识别。
在这里插入图片描述

3、环境配置

  • 本项目需要python3.8及以下依赖库
	opencv-python==4.5.5.64tensorflow==2.9.1PyQt5==5.15.6scikit-image==0.19.3torch==1.8.0keras==2.9.0Pillow==9.0.1scipy==1.8.0
  • 请按照给定的python版本配置环境,否则可能会因依赖不兼容而出错
(1)使用anaconda新建python3.8环境:
conda create -n env_rec python=3.8
(2)使用pip安装所需的依赖,可通过requirement.txt:
pip install -r requirements.txt# GPU训练
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118

4、数据集及训练

类别:

'Apple Scab Leaf': "苹果黑星病叶", 'Apple leaf': "苹果叶", 'Apple rust leaf': "苹果绣叶",'Bell_pepper leaf spot': "甜椒叶斑病", 'Bell_pepper leaf': "甜椒叶",'Blueberry leaf': "蓝莓叶", 'Cherry leaf': "樱桃叶", 'Corn Gray leaf spot': "玉米灰叶斑病",'Corn leaf blight': "玉米叶枯病", 'Corn rust leaf': "玉米锈叶", 'Peach leaf': "桃叶",'Potato leaf early blight': "马铃薯叶早疫病", 'Potato leaf late blight': "马铃薯叶晚疫病",'Potato leaf': "马铃薯叶", 'Raspberry leaf': "覆盆子叶", 'Soyabean leaf': "大豆叶",'Soybean leaf': "大豆叶", 'Squash Powdery mildew leaf': "南瓜白粉病叶",'Strawberry leaf': "草莓叶", 'Tomato Early blight leaf': "番茄早疫病叶",'Tomato Septoria leaf spot': "番茄叶斑病", 'Tomato leaf bacterial spot': "番茄叶细菌性斑病",'Tomato leaf late blight': "番茄叶晚疫病", 'Tomato leaf mosaic virus': "番茄叶花叶病毒",'Tomato leaf yellow virus': "番茄叶黄病毒", 'Tomato leaf': "番茄叶",'Tomato mold leaf': "番茄霉叶", 'Tomato two spotted spider mites leaf': "番茄二斑叶螨叶",'grape leaf black rot': "葡萄叶黑腐病", 'grape leaf': "葡萄叶"

训练农作物叶片识别的模型训练曲线图
在这里插入图片描述
PR-curve
在这里插入图片描述

5、软件核心功能介绍及效果演示

在这里插入图片描述

注:界面可以修改

6、结束语

以上便是的基于YOLOV5+Pyqt5农作物叶片病害检测系统目标检测系统的部分内容,希望小伙伴能批评指正。关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

这篇关于基于YOLOV5+Pyqt5农作物叶片病害检测系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/866919

相关文章

PyQt5 GUI 开发的基础知识

《PyQt5GUI开发的基础知识》Qt是一个跨平台的C++图形用户界面开发框架,支持GUI和非GUI程序开发,本文介绍了使用PyQt5进行界面开发的基础知识,包括创建简单窗口、常用控件、窗口属性设... 目录简介第一个PyQt程序最常用的三个功能模块控件QPushButton(按钮)控件QLable(纯文本

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

Linux系统之lvcreate命令使用解读

《Linux系统之lvcreate命令使用解读》lvcreate是LVM中创建逻辑卷的核心命令,支持线性、条带化、RAID、镜像、快照、瘦池和缓存池等多种类型,实现灵活存储资源管理,需注意空间分配、R... 目录lvcreate命令详解一、命令概述二、语法格式三、核心功能四、选项详解五、使用示例1. 创建逻

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux系统性能检测命令详解

《Linux系统性能检测命令详解》本文介绍了Linux系统常用的监控命令(如top、vmstat、iostat、htop等)及其参数功能,涵盖进程状态、内存使用、磁盘I/O、系统负载等多维度资源监控,... 目录toppsuptimevmstatIOStatiotopslabtophtopdstatnmon

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

linux重启命令有哪些? 7个实用的Linux系统重启命令汇总

《linux重启命令有哪些?7个实用的Linux系统重启命令汇总》Linux系统提供了多种重启命令,常用的包括shutdown-r、reboot、init6等,不同命令适用于不同场景,本文将详细... 在管理和维护 linux 服务器时,完成系统更新、故障排查或日常维护后,重启系统往往是必不可少的步骤。本文

Mac系统下卸载JAVA和JDK的步骤

《Mac系统下卸载JAVA和JDK的步骤》JDK是Java语言的软件开发工具包,它提供了开发和运行Java应用程序所需的工具、库和资源,:本文主要介绍Mac系统下卸载JAVA和JDK的相关资料,需... 目录1. 卸载系统自带的 Java 版本检查当前 Java 版本通过命令卸载系统 Java2. 卸载自定

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间