【yolov5小技巧(1)】---可视化并统计目标检测中的TP、FP、FN

2024-04-01 07:28

本文主要是介绍【yolov5小技巧(1)】---可视化并统计目标检测中的TP、FP、FN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述


文章目录

  • 🚀🚀🚀前言
  • 一、1️⃣相关名词解释
  • 二、2️⃣论文中案例
  • 三、3️⃣新建相关文件夹
  • 四、4️⃣detect.py推理
  • 五、5️⃣开始可视化
  • 六、6️⃣可视化结果分析


在这里插入图片描述

👀🎉📜系列文章目录

嘻嘻 暂时还没有~~~~

🚀🚀🚀前言

在目标检测过程中,看F1置信度分数,依旧map@0.5或者AP、recall这些评估指标虽然可以很简单粗暴的看出模型训练的一个性能,但是缺无法直观的看出究竟哪一点提升了,然而这些品估指标都是通过TP、FP、FN进行计算的,如果能够直观的看见哪些目标是TP、FP、FN,那么在实验过程中就能知道自己改进的网络对哪些目标是有提升效果的。

所以这个文章将手把手带你如何可视化自己数据集中的TP、FP、FN,帮助你更直观的感受自己网络究竟在改进在哪些方面


一、1️⃣相关名词解释

在目标检测中,TP(真正例)、FP(假正例)和FN(假负例) 的定义稍微复杂一些,因为目标检测不仅要考虑分类是否正确,还要考虑定位是否准确。以下是这些概念的解释和示例:

1.真正例(True Positives,TP):指检测到的目标与实际目标之间的匹配。这意味着检测到的目标在位置和类别上都与实际目标匹配。
2.假正例(False Positives,FP):指模型错误地将负例(非目标)样本预测为正例(目标)。在目标检测中,FP 是指检测到的目标与实际无目标区域之间的匹配。
3.假负例(False Negatives,FN):指模型未能检测到实际存在的目标。在目标检测中,FN 是指未检测到的实际目标。

举个例子:
假设我们有一张图像,其中包含一只猫和一只狗。我们的目标检测模型会尝试检测图像中的动物,并且根据预测结果计算 TP、FP 和 FN。

  • TP(真正例):如果模型正确地检测到了图像中的猫和狗,并且对它们进行了正确的分类和定位,那么这就是一个 TP。
  • FP(假正例):如果模型在图像中的某些区域错误地检测到了动物(例如,将一只猫误认为狗),或者在图像中检测到了不存在的动物,那么这就是一个 FP。
  • FN(假负例):如果模型未能检测到图像中的某些动物(例如,漏掉了图像中的狗),那么这就是一个 FN。

例如,如果我们的模型在图像中正确检测到了猫和狗,并且没有检测到不存在的动物,那么:
TP = 2(假设图像中只有一只猫和一只狗)
FP = 0(模型未将不存在的动物检测为目标)
FN = 0(模型未漏掉任何实际存在的目标)

二、2️⃣论文中案例

下面这幅图是出之NWD这篇论文,基于 IoU 的检测器(第一行)和基于 NWD 的检测器(第二行)的一些可视化结果。(感兴趣的可以去我的目标检测论文专栏阅读)。其中绿色、蓝色和红色框分别表示真阳性(TP)、假阳性(FP)和假阴性(FN) 预测。下面的实验可视化颜色也是遵循这种颜色分配!!!
在这里插入图片描述

三、3️⃣新建相关文件夹

这里需要建立三个文件,可以选择在你的yolov5项目文件中新建如下文件夹(千万不要把文件夹命名错了)。文件夹目录结构如下:
在这里插入图片描述

  • image文件:存储的是等下我们需要推理的照片
  • label文件夹:存储的是image文件夹里面所有图片的标注类别
  • predict文件夹:等下存储我们推理detect.py推理image图片后的标准信息。
  • tricks_1.py文件:我们的TP、FP、FN可视化代码,代码如下
import os, cv2, tqdm, shutil
import numpy as npdef xywh2xyxy(box):box[:, 0] = box[:, 0] - box[:, 2] / 2box[:, 1] = box[:, 1] - box[:, 3] / 2box[:, 2] = box[:, 0] + box[:, 2]box[:, 3] = box[:, 1] + box[:, 3]return boxdef iou(box1, box2):x11, y11, x12, y12 = np.split(box1, 4, axis=1)x21, y21, x22, y22 = np.split(box2, 4, axis=1)xa = np.maximum(x11, np.transpose(x21))xb = np.minimum(x12, np.transpose(x22))ya = np.maximum(y11, np.transpose(y21))yb = np.minimum(y12, np.transpose(y22))area_inter = np.maximum(0, (xb - xa + 1)) * np.maximum(0, (yb - ya + 1))area_1 = (x12 - x11 + 1) * (y12 - y11 + 1)area_2 = (x22 - x21 + 1) * (y22 - y21 + 1)area_union = area_1 + np.transpose(area_2) - area_interiou = area_inter / area_unionreturn ioudef draw_box(img, box, color):cv2.rectangle(img, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])), color, thickness=2)return imgif __name__ == '__main__':postfix = 'jpg'img_path = 'image'label_path = 'label'predict_path = 'predict'save_path = 'vis'classes = ['train', 'diningtable', 'person', 'bus', 'pottedplant', 'chair', 'cat', 'tvmonitor', 'motorbike', 'sofa', 'cow', 'bottle', 'aeroplane', 'dog', 'horse', 'car', 'boat', 'sheep', 'bicycle', 'bird']detect_color, missing_color, error_color  = (0, 255, 0), (0, 0, 255), (255, 0, 0)iou_threshold = 0.45if os.path.exists(save_path):shutil.rmtree(save_path)os.makedirs(save_path, exist_ok=True)all_right_num, all_missing_num, all_error_num = 0, 0, 0with open('result.txt', 'w') as f_w:for path in tqdm.tqdm(os.listdir(label_path)):image = cv2.imread(f'{img_path}/{path[:-4]}.{postfix}')if image is None:print(f'image:{img_path}/{path[:-4]}.{postfix} not found.', file=f_w)h, w = image.shape[:2]try:with open(f'{predict_path}/{path}') as f:pred = np.array(list(map(lambda x:np.array(x.strip().split(), dtype=np.float32), f.readlines())))pred[:, 1:5] = xywh2xyxy(pred[:, 1:5])pred[:, [1, 3]] *= wpred[:, [2, 4]] *= hpred = list(pred)except:pred = []try:with open(f'{label_path}/{path}') as f:label = np.array(list(map(lambda x:np.array(x.strip().split(), dtype=np.float32), f.readlines())))label[:, 1:] = xywh2xyxy(label[:, 1:])label[:, [1, 3]] *= wlabel[:, [2, 4]] *= hexcept:print(f'label path:{label_path}/{path} (not found or no target).', file=f_w)right_num, missing_num, error_num = 0, 0, 0label_id, pred_id = list(range(label.shape[0])), [] if len(pred) == 0 else list(range(len(pred)))for i in range(label.shape[0]):if len(pred) == 0: breakious = iou(label[i:i+1, 1:], np.array(pred)[:, 1:5])[0]ious_argsort = ious.argsort()[::-1]missing = Truefor j in ious_argsort:if ious[j] < iou_threshold: breakif label[i, 0] == pred[j][0]:image = draw_box(image, pred[j][1:5], detect_color)pred.pop(j)missing = Falseright_num += 1breakif missing:image = draw_box(image, label[i][1:5], missing_color)missing_num += 1if len(pred):for j in range(len(pred)):image = draw_box(image, pred[j][1:5], error_color)error_num += 1all_right_num, all_missing_num, all_error_num = all_right_num + right_num, all_missing_num + missing_num, all_error_num + error_numcv2.imwrite(f'{save_path}/{path[:-4]}.{postfix}', image)print(f'name:{path[:-4]} right:{right_num} missing:{missing_num} error:{error_num}', file=f_w)print(f'all_result: right:{all_right_num} missing:{all_missing_num} error:{all_error_num}', file=f_w)

四、4️⃣detect.py推理

关于detect.py文件修改如下:
在这里插入图片描述
运行detect.py文件之后会在run文件夹中生成推理出来的的标签文件,其中每个推理文件都标注了预测类别、位置、以及置信度:
在这里插入图片描述
在这里插入图片描述

五、5️⃣开始可视化

🔥将推理生成的labels文件夹中的txt文件全部拷贝到我们刚刚自己新建的predict文件夹当中,然后运行tricks_1.py代码,会生成一个vis文件夹,和一个result.txt文件,其中vis就是可视化结果,result.txt保存的就是每个图片物体目标right、missing、error的数量。

六、6️⃣可视化结果分析

🚀其中绿色是预测正确的,蓝色框表示类别预测错误的。红色表示该缺陷存在,但是却没有预测出来。
在这里插入图片描述
在这里插入图片描述


在这里插入图片描述

这篇关于【yolov5小技巧(1)】---可视化并统计目标检测中的TP、FP、FN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/866565

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Java实现复杂查询优化的7个技巧小结

《Java实现复杂查询优化的7个技巧小结》在Java项目中,复杂查询是开发者面临的“硬骨头”,本文将通过7个实战技巧,结合代码示例和性能对比,手把手教你如何让复杂查询变得优雅,大家可以根据需求进行选择... 目录一、复杂查询的痛点:为何你的代码“又臭又长”1.1冗余变量与中间状态1.2重复查询与性能陷阱1.

Python内存优化的实战技巧分享

《Python内存优化的实战技巧分享》Python作为一门解释型语言,虽然在开发效率上有着显著优势,但在执行效率方面往往被诟病,然而,通过合理的内存优化策略,我们可以让Python程序的运行速度提升3... 目录前言python内存管理机制引用计数机制垃圾回收机制内存泄漏的常见原因1. 循环引用2. 全局变

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.