AtCoder Beginner Contest 347 (ABCDEF题)视频讲解

2024-03-31 22:12

本文主要是介绍AtCoder Beginner Contest 347 (ABCDEF题)视频讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

A - Divisible

Problem Statement

You are given positive integers N N N and K K K, and a sequence of length N N N, A = ( A 1 , A 2 , … , A N ) A=(A_1,A_2,\ldots,A_N) A=(A1,A2,,AN).
Extract all elements of A A A that are multiples of K K K, divide them by K K K, and print the quotients.

Constraints

1 ≤ N , K ≤ 100 1\leq N,K\leq 100 1N,K100
KaTeX parse error: Expected 'EOF', got '&' at position 11: 1\leq A_1 &̲lt; A_2 < \l…
A A A has at least one multiple of K K K.
All given numbers are integers.

Input

The input is given from Standard Input in the following format:

N N N K K K
A 1 A_1 A1 A 2 A_2 A2 … \ldots A N A_N AN

Output

Divide all elements of A A A that are multiples of K K K and print the quotients in ascending order with spaces in between.

Sample Input 1
5 2
2 5 6 7 10
Sample Output 1
1 3 5

The multiples of 2 2 2 among the elements in A A A are 2 2 2, 6 6 6, and 10 10 10. Divide them by 2 2 2 to get 1 1 1, 3 3 3, and 5 5 5, and print them in ascending order with spaces in between.

Sample Input 2
3 1
3 4 7
Sample Output 2
3 4 7
Sample Input 3
5 10
50 51 54 60 65
Sample Output 3
5 6

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int n, k;cin >> n >> k;std::vector<int> a(n);for (int i = 0; i < n; i ++) {cin >> a[i];if (a[i] % k == 0)cout << a[i] / k << " ";}return 0;
}

B - Substring

Problem Statement

You are given a string S S S consisting of lowercase English letters. How many different non-empty substrings does S S S have?
A substring is a contiguous subsequence. For example, xxx is a substring of yxxxy but not of xxyxx.

Constraints

S S S is a string of length between 1 1 1 and 100 100 100, inclusive, consisting of lowercase English letters.

Input

The input is given from Standard Input in the following format:

S S S

Output

Print the answer.

Sample Input 1
yay
Sample Output 1
5

S S S has the following five different non-empty substrings:
a
y
ay
ya
yay

Sample Input 2
aababc
Sample Output 2
17
Sample Input 3
abracadabra
Sample Output 3
54

Solution

具体见文末视频。

Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);string s;cin >> s;int n = s.size();set<string> res;for (int i = 0; i < n; i ++)for (int j = 1; j <= n - i; j ++)res.insert(s.substr(i, j));cout << res.size() << endl;return 0;
}

C - Ideal Holidays

Problem Statement

In the Kingdom of AtCoder, a week consists of A + B A+B A+B days, with the first through A A A-th days being holidays and the ( A + 1 ) (A+1) (A+1)-th through ( A + B ) (A+B) (A+B)-th being weekdays.
Takahashi has N N N plans, and the i i i-th plan is scheduled D i D_i Di days later.
He has forgotten what day of the week it is today. Determine if it is possible for all of his N N N plans to be scheduled on holidays.

Constraints

1 ≤ N ≤ 2 × 1 0 5 1\leq N\leq 2\times 10^5 1N2×105
1 ≤ A , B ≤ 1 0 9 1\leq A,B\leq 10^9 1A,B109
KaTeX parse error: Expected 'EOF', got '&' at position 10: 1\leq D_1&̲lt;D_2&lt;\ldot…

Input

The input is given from Standard Input in the following format:

N N N A A A B B B
D 1 D_1 D1 D 2 D_2 D2 … \ldots D N D_N DN

Output

Print Yes in a single line if it is possible for all of Takahashi’s N N N plans to be scheduled on holidays, and No otherwise.

Sample Input 1
3 2 5
1 2 9
Sample Output 1
Yes

In this input, a week consists of seven days, with the first through second days being holidays and the third through seventh days being weekdays.
Let us assume today is the seventh day of the week. In this case, one day later would be the first day of the week, two days later would be the second day of the week, and nine days later would also be the second day of the week, making all plans scheduled on holidays. Therefore, it is possible for all of Takahashi’s N N N plans to be scheduled on holidays.

Sample Input 2
2 5 10
10 15
Sample Output 2
No
Sample Input 3
4 347 347
347 700 705 710
Sample Output 3
Yes

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 2e5 + 10;int n, a, b;
int d[N];signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);cin >> n >> a >> b;int l1 = -1e18, r1 = 1e18, l2 = -1e18, r2 = 1e18;for (int i = 1; i <= n; i ++) {cin >> d[i];d[i] %= (a + b);int tl = (0 - d[i] + a + b) % (a + b), tr = (a - 1 - d[i] + a + b) % (a + b);if (tl > tr) {l1 = max(0ll, l1), r1 = min(r1, tr);l2 = max(l2, tl), r2 = min(a + b - 1, r2);} elsel1 = max(l1, tl), r1 = min(r1, tr), l2 = max(l2, tl), r2 = min(r2, tr);}if (l1 <= r1 || l2 <= r2) cout << "Yes" << endl;else cout << "No" << endl;return 0;
}

D - Popcount and XOR

Problem Statement

You are given non-negative integers a a a, b b b, and C C C.
Determine if there is a pair of non-negative integers ( X , Y ) (X, Y) (X,Y) that satisfies all of the following five conditions. If such a pair exists, print one.
KaTeX parse error: Expected 'EOF', got '&' at position 10: 0 \leq X &̲lt; 2^{60}
KaTeX parse error: Expected 'EOF', got '&' at position 10: 0 \leq Y &̲lt; 2^{60}
popcount ⁡ ( X ) = a \operatorname{popcount}(X) = a popcount(X)=a
popcount ⁡ ( Y ) = b \operatorname{popcount}(Y) = b popcount(Y)=b
X ⊕ Y = C X \oplus Y = C XY=C
Here, ⊕ \oplus denotes the bitwise XOR.
If multiple pairs ( X , Y ) (X, Y) (X,Y) satisfy the conditions, you may print any of them.

What is popcount? For a non-negative integer $x$, the popcount of $x$ is the number of $1$s in the binary representation of $x$. More precisely, for a non-negative integer $x$ such that $\displaystyle x=\sum _ {i=0} ^ \infty b _ i2 ^ i\ (b _ i\in\lbrace0,1\rbrace)$, we have $\displaystyle\operatorname{popcount}(x)=\sum _ {i=0} ^ \infty b _ i$. For example, $13$ in binary is 1101, so $\operatorname{popcount}(13)=3$. What is bitwise XOR? For non-negative integers $x, y$, the bitwise exclusive OR $x \oplus y$ is defined as follows. The $2^k$'s place $\ (k\geq0)$ in the binary representation of $x \oplus y$ is $1$ if exactly one of the $2^k$'s places $\ (k\geq0)$ in the binary representations of $x$ and $y$ is $1$, and $0$ otherwise. For example, $9$ and $3$ in binary are 1001 and 0011, respectively, so $9 \oplus 3 = 10$ (in binary, 1010). #### Constraints

0 ≤ a ≤ 60 0 \leq a \leq 60 0a60
0 ≤ b ≤ 60 0 \leq b \leq 60 0b60
KaTeX parse error: Expected 'EOF', got '&' at position 10: 0 \leq C &̲lt; 2^{60}
All input values are integers.

Input

The input is given from Standard Input in the following format:

a a a b b b C C C

Output

If there is a pair of non-negative integers that satisfies the conditions, choose one such pair ( X , Y ) (X, Y) (X,Y) and print X X X and Y Y Y in this order, with a space in between.
If no such pair exists, print -1.

Sample Input 1
3 4 7
Sample Output 1
28 27

The pair ( X , Y ) = ( 28 , 27 ) (X, Y) = (28, 27) (X,Y)=(28,27) satisfies the conditions.
Here, X X X and Y Y Y in binary are 11100 and 11011, respectively.
X X X in binary is 11100, so popcount ⁡ ( X ) = 3 \operatorname{popcount}(X) = 3 popcount(X)=3.
Y Y Y in binary is 11011, so popcount ⁡ ( Y ) = 4 \operatorname{popcount}(Y) = 4 popcount(Y)=4.
X ⊕ Y X \oplus Y XY in binary is 00111, so X ⊕ Y = 7 X \oplus Y = 7 XY=7.
If multiple pairs of non-negative integers satisfy the conditions, you may print any of them, so printing 42 45, for example, would also be accepted.

Sample Input 2
34 56 998244353
Sample Output 2
-1

No pair of non-negative integers satisfies the conditions.

Sample Input 3
39 47 530423800524412070
Sample Output 3
540431255696862041 10008854347644927

Note that the values to be printed may not fit in 32 32 32-bit integers.

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);int a, b, c;cin >> a >> b >> c;int r1 = 0, r2 = 0;for (int i = 0; i < 61; i ++)if (c >> i & 1) {if (a > b) r1 += (1ll << i), a --;else r2 += (1ll << i), b --;}if (a != b || a < 0 || b < 0) {cout << -1 << endl;return 0;}for (int i = 0; i < 61; i ++)if (!(c >> i & 1) && a && b)r1 += (1ll << i), r2 += (1ll << i), a --, b --;if (a || b) {cout << -1 << endl;return 0;}cout << r1 << " " << r2 << endl;return 0;
}

E - Set Add Query

Problem Statement

There is an integer sequence A = ( A 1 , A 2 , … , A N ) A=(A_1,A_2,\ldots,A_N) A=(A1,A2,,AN) of length N N N, where all elements are initially set to 0 0 0. Also, there is a set S S S, which is initially empty.
Perform the following Q Q Q queries in order. Find the value of each element in the sequence A A A after processing all Q Q Q queries. The i i i-th query is in the following format:
An integer x i x_i xi is given. If the integer x i x_i xi is contained in S S S, remove x i x_i xi from S S S. Otherwise, insert x i x_i xi to S S S. Then, for each j = 1 , 2 , … , N j=1,2,\ldots,N j=1,2,,N, add ∣ S ∣ |S| S to A j A_j Aj if j ∈ S j\in S jS.
Here, ∣ S ∣ |S| S denotes the number of elements in the set S S S. For example, if S = { 3 , 4 , 7 } S=\lbrace 3,4,7\rbrace S={3,4,7}, then ∣ S ∣ = 3 |S|=3 S=3.

Constraints

1 ≤ N , Q ≤ 2 × 1 0 5 1\leq N,Q\leq 2\times10^5 1N,Q2×105
1 ≤ x i ≤ N 1\leq x_i\leq N 1xiN
All given numbers are integers.

Input

The input is given from Standard Input in the following format:

N N N Q Q Q
x 1 x_1 x1 x 2 x_2 x2 … \ldots x Q x_Q xQ

Output

Print the sequence A A A after processing all queries in the following format:

A 1 A_1 A1 A 2 A_2 A2 … \ldots A N A_N AN

Sample Input 1
3 4
1 3 3 2
Sample Output 1
6 2 2

In the first query, 1 1 1 is inserted to S S S, making S = { 1 } S=\lbrace 1\rbrace S={1}. Then, ∣ S ∣ = 1 |S|=1 S=1 is added to A 1 A_1 A1. The sequence becomes A = ( 1 , 0 , 0 ) A=(1,0,0) A=(1,0,0).
In the second query, 3 3 3 is inserted to S S S, making S = { 1 , 3 } S=\lbrace 1,3\rbrace S={1,3}. Then, ∣ S ∣ = 2 |S|=2 S=2 is added to A 1 A_1 A1 and A 3 A_3 A3. The sequence becomes A = ( 3 , 0 , 2 ) A=(3,0,2) A=(3,0,2).
In the third query, 3 3 3 is removed from S S S, making S = { 1 } S=\lbrace 1\rbrace S={1}. Then, ∣ S ∣ = 1 |S|=1 S=1 is added to A 1 A_1 A1. The sequence becomes A = ( 4 , 0 , 2 ) A=(4,0,2) A=(4,0,2).
In the fourth query, 2 2 2 is inserted to S S S, making S = { 1 , 2 } S=\lbrace 1,2\rbrace S={1,2}. Then, ∣ S ∣ = 2 |S|=2 S=2 is added to A 1 A_1 A1 and A 2 A_2 A2. The sequence becomes A = ( 6 , 2 , 2 ) A=(6,2,2) A=(6,2,2).
Eventually, the sequence becomes A = ( 6 , 2 , 2 ) A=(6,2,2) A=(6,2,2).

Sample Input 2
4 6
1 2 3 2 4 2
Sample Output 2
15 9 12 7

Solution

具体见文末视频。


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 2e5 + 10;int n, q;
int a[N], s[N], res[N], id[N];
int cnt[N], lst[N];signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);cin >> n >> q;int idx = 0;for (int i = 1; i <= q; i ++) {cin >> a[i];if (!id[a[i]]) id[a[i]] = ++ idx;}set<int> S;int r = 0;for (int i = 1; i <= q; i ++) {cnt[a[i]] ++;if (S.count(a[i])) S.erase(a[i]);else S.insert(a[i]);s[i] = s[i - 1] + S.size();r = max(id[a[i]], r);if (S.size()) res[1] += S.size(), res[r + 1] -= S.size();}for (int i = 1; i <= n; i ++)res[i] += res[i - 1], lst[i] = q;for (int i = q; i >= 1; i --) {if (cnt[a[i]] % 2 == 0) {res[id[a[i]]] -= (s[lst[a[i]]] - s[i - 1]);} else {lst[a[i]] = i - 1;}cnt[a[i]] --;}for (int i = 1; i <= n; i ++)cout << res[id[i]] << " ";return 0;
}

F - Non-overlapping Squares

Problem Statement

There is an N × N N\times N N×N grid, and the cell at the i i i-th row from the top and the j j j-th column from the left ( 1 ≤ i , j ≤ N ) (1\leq i,j\leq N) (1i,jN) contains the integer A i , j A _ {i,j} Ai,j.
You are given an integer M M M. When choosing three non-overlapping M × M M\times M M×M grids, find the maximum possible sum of the integers written in the chosen grids.

Formal definition of the problem A $6$-tuple of integers $(i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3)$ is called a good $6$-tuple when it satisfies the following three conditions: $1\leq i _ k\leq N-M+1\ (k=1,2,3)$ $1\leq j _ k\leq N-M+1\ (k=1,2,3)$ If $k\neq l\ (k,l\in\lbrace1,2,3\rbrace)$, the sets $\lbrace(i,j)\mid i _ k\leq i\lt i _ k+M\wedge j _ k\leq j\lt j _ k+M\rbrace$ and $\lbrace(i,j)\mid i _ l\leq i\lt i _ l+M\wedge j _ l\leq j\lt j _ l+M\rbrace$ do not intersect. Find the maximum value of $\displaystyle \sum _ {k=1} ^ 3\sum _ {i=i _ k} ^ {i _ k+M-1}\sum _ {j=j _ k} ^ {j _ k+M-1}A _ {i,j}$ for a good $6$-tuple $(i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3)$. It can be shown that a good $6$-tuple exists under the constraints of this problem. #### Constraints

2 ≤ N ≤ 1000 2\leq N\leq 1000 2N1000
1 ≤ M ≤ N / 2 1\leq M\leq N/2 1MN/2
0 ≤ A i , j ≤ 1 0 9 0\leq A _ {i,j}\leq10 ^ 9 0Ai,j109
All input values are integers.

Input

The input is given from Standard Input in the following format:

N N N M M M
A 1 , 1 A _ {1,1} A1,1 A 1 , 2 A _ {1,2} A1,2 … \ldots A 1 , N A _ {1,N} A1,N
A 2 , 1 A _ {2,1} A2,1 A 2 , 2 A _ {2,2} A2,2 … \ldots A 2 , N A _ {2,N} A2,N
⋮ \vdots ⋮ \ \vdots   ⋱ \ddots ⋮ \vdots
A N , 1 A _ {N,1} AN,1 A N , 2 A _ {N,2} AN,2 … \ldots A N , N A _ {N,N} AN,N

Output

Print the answer.

Sample Input 1
7 3
3 1 4 1 5 9 2
6 5 3 5 8 9 7
9 3 2 3 8 4 6
2 6 4 3 3 8 3
2 7 9 5 0 2 8
8 4 1 9 7 1 6
9 3 9 9 3 7 5
Sample Output 1
154

From the given grid, if we choose three 3 × 3 3\times3 3×3 grids as shown in the figure below (this corresponds to setting ( i 1 , j 1 , i 2 , j 2 , i 3 , j 3 ) = ( 1 , 5 , 2 , 1 , 5 , 2 ) (i _ 1,j _ 1,i _ 2,j _ 2,i _ 3,j _ 3)=(1,5,2,1,5,2) (i1,j1,i2,j2,i3,j3)=(1,5,2,1,5,2)), the sum of the numbers written in the chosen grids will be 154 154 154.

There is no way to make the sum 155 155 155 or greater while satisfying the conditions in the problem statement, so print 154 154 154.

Sample Input 2
7 1
3 1 4 1 5 9 2
6 5 3 5 8 9 7
9 3 2 3 8 4 6
2 6 4 3 3 8 3
2 7 9 5 0 2 8
8 4 1 9 7 1 6
9 3 9 9 3 7 5
Sample Output 2
27

The following choice is optimal.

Sample Input 3
16 4
74 16 58 32 97 52 43 51 40 58 13 24 65 11 63 29
98 75 40 77 15 50 83 85 35 46 38 37 56 38 63 55
95 42 10 70 53 40 25 10 70 32 33 19 52 79 74 58
33 91 53 11 65 63 78 77 81 46 81 63 11 82 55 62
39 95 92 69 77 89 14 84 53 78 71 81 66 39 96 29
74 26 60 55 89 35 32 64 17 26 74 92 84 33 59 82
23 69 10 95 94 14 58 58 97 95 62 58 72 55 71 43
93 77 27 87 74 72 91 37 53 80 51 71 37 35 97 46
81 88 26 79 78 30 53 68 83 28 59 28 74 55 20 86
93 13 25 19 53 53 17 24 69 14 67 81 10 19 69 90
88 83 62 92 22 31 27 34 67 48 42 32 68 14 96 87
44 69 25 48 68 42 53 82 44 42 96 31 13 56 68 83
63 87 24 75 16 70 63 99 95 10 63 26 56 12 77 49
94 83 69 95 48 41 40 97 45 61 26 38 83 91 44 31
43 69 54 64 20 60 17 15 62 25 58 50 59 63 88 70
72 95 21 28 41 14 77 22 64 78 33 55 67 51 78 40
Sample Output 3
3295

The following choice is optimal.

Solution

后期补一下这题目的视频


Code

#include <bits/stdc++.h>
#define fi first
#define se second
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int N = 1e3 + 10;int n, m;
int a[N][N], s[N][N], ln[N], cl[N];
int lu[N][N], ld[N][N], ru[N][N], rd[N][N];signed main() {cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);cin >> n >> m;for (int i = 1; i <= n; i ++)for (int j = 1; j <= n; j ++)cin >> a[i][j], a[i][j] += a[i][j - 1] + a[i - 1][j] - a[i - 1][j - 1];for (int i = 1; i <= n - m + 1; i ++)for (int j = 1; j <= n - m + 1; j ++) {s[i][j] = a[i + m - 1][j + m - 1] - a[i - 1][j + m - 1] - a[i + m - 1][j - 1] + a[i - 1][j - 1];ln[i] = max(ln[i], s[i][j]), cl[j] = max(cl[j], s[i][j]);}for (int i = m; i <= n; i ++)for (int j = m; j <= n; j ++)lu[i][j] = max(max(lu[i - 1][j], lu[i][j - 1]), s[i - m + 1][j - m + 1]);for (int i = n - m + 1; i >= 1; i --)for (int j = m; j <= n; j ++)ld[i][j] = max(max(ld[i + 1][j], ld[i][j - 1]), s[i][j - m + 1]);for (int i = m; i <= n; i ++)for (int j = n - m + 1; j >= 1; j --)ru[i][j] = max(max(ru[i - 1][j], ru[i][j + 1]), s[i - m + 1][j]);for (int i = n - m + 1; i >= 1; i --)for (int j = n - m + 1; j >= 1; j --)rd[i][j] = max(max(rd[i + 1][j], rd[i][j + 1]), s[i][j]);int res = 0;for (int i = 1; i <= n; i ++)for (int j = 1; j <= n; j ++) {res = max(res, lu[i][j] + ru[i][j + 1] + ld[i + 1][n]);res = max(res, lu[i][j] + ld[i + 1][j] + rd[1][j + 1]);res = max(res, ld[i][j] + rd[i][j + 1] + ru[i - 1][1]);res = max(res, ru[i][j] + rd[i + 1][j] + ld[1][j - 1]);}for (int i = m; i <= n; i ++) {int mx1 = 0, mx2 = 0;for (int j = i + m; j <= n; j ++) {mx1 = max(mx1, ln[j - m + 1]), mx2 = max(mx2, cl[j - m + 1]);res = max(res, ru[i][1] + mx1 + rd[j + 1][1]);res = max(res, ld[1][i] + mx2 + rd[1][j + 1]);}}cout << res << endl;return 0;
}

视频题解

Atcoder Beginner Contest 347(A ~ E 讲解)

欢迎大家关注我的B站空间:https://space.bilibili.com/630340560


最后祝大家早日在这里插入图片描述

这篇关于AtCoder Beginner Contest 347 (ABCDEF题)视频讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/865484

相关文章

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

基于Python和MoviePy实现照片管理和视频合成工具

《基于Python和MoviePy实现照片管理和视频合成工具》在这篇博客中,我们将详细剖析一个基于Python的图形界面应用程序,该程序使用wxPython构建用户界面,并结合MoviePy、Pill... 目录引言项目概述代码结构分析1. 导入和依赖2. 主类:PhotoManager初始化方法:__in

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快

Java集合中的List超详细讲解

《Java集合中的List超详细讲解》本文详细介绍了Java集合框架中的List接口,包括其在集合中的位置、继承体系、常用操作和代码示例,以及不同实现类(如ArrayList、LinkedList和V... 目录一,List的继承体系二,List的常用操作及代码示例1,创建List实例2,增加元素3,访问元